
LinchPin Documentation
Release 1.6.6rc1

Samvaran Kashyap Rallabandi

Dec 14, 2018

Contents

1 Why LinchPin? 3

2 Indices and tables 81

Python Module Index 83

i

ii

LinchPin Documentation, Release 1.6.6rc1

Welcome to the LinchPin documentation!

LinchPin is a simple and flexible hybrid cloud orchestration tool. Its intended purpose is managing cloud resources
across multiple infrastructures. These resources can be provisioned, decommissioned, and configured all using declar-
ative data and a simple command-line interface.

Additionally, LinchPin provides a Python API for managing resources. The cloud management component is backed
by Ansible. The front-end API manages the interface between the command line (or other interfaces) and calls to the
Ansible API.

This documentation covers LinchPin version (1.6.6rc1). For recent features, see the updated 1.6.6rc1.

Contents 1

https://ansible.com

LinchPin Documentation, Release 1.6.6rc1

2 Contents

CHAPTER 1

Why LinchPin?

LinchPin provides a simple, declarative interface to a repeatable set of resources on cloud providers such as Amazon
Web Services, Openstack, and Google Cloud Platform to help improve productivity and performance for you and your
team. It’s built on top of other proven resources, including Ansible and Python. LinchPin is built with a focus on
Continuous Integration and Continuous Delivery tooling, in which its workflow excels.

LinchPin has some very useful features, including inventory generation, hooks, and more. Using these, specific cloud
resources can be spun up for testing applications. By creating a single PinFile with your targets in an environment,
you can simply run linchpin up and have your environment up and configured, ready for you to do your work with
very little effort.

1.1 Getting Started

The LinchPin getting started guide will walk you through your first LinchPin project, and show off the basics of the
major features LinchPin has to offer.

If you are curious about LinchPin and its features, please read the “Why LinchPin?” page.

This getting started guide will use LinchPin with the dummy provider. LinchPin can work with many other providers
and use cases. After following this tutorial, check out some other providers and use cases.

Before starting, please install the latest version of LinchPin.

1.1.1 Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires
Ansible 2.3.1 or newer.

Note: Some providers have additional dependencies. Additional software requirements can be found in the Providers
documentation.

3

LinchPin Documentation, Release 1.6.6rc1

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed.
Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux
and OS X, but the version present might be older than the version needed for use with Ansible. You can check the
version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated
versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible 2.3.1 or newer, this is a core requirement. Beyond installing Ansible,
there are several packages that need to be installed:

* libffi-devel

* openssl-devel

* libyaml-devel

* gmp-devel

* libselinux-python

* make

* gcc

* redhat-rpm-config

* libxml2-python

* libxslt-python

For CentOS or RHEL the following packages should be installed:

$ sudo yum install python-pip python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Attention: CentOS 6 (and likely RHEL 6) require special care during installation. See centos6_install for more
detail.

For Fedora 26+ the following packages should be installed:

$ sudo dnf install python-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config libxml2-python libxslt-python

Installing LinchPin

Note: Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to
create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper)

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin
..snip..

4 Chapter 1. Why LinchPin?

mailto:linchpin@redhat.com

LinchPin Documentation, Release 1.6.6rc1

Using mkvirtualenv with Python 3 (now default on some Linux systems) will attempt to link to the python3 binary.
LinchPin isn’t fully compatible with Python 3 yet. However, mkvirtualenv provides the -p option for specifying the
python2 binary.

$ mkvirtualenv linchpin -p $(which python2)
..snip..
(linchpin) $ pip install linchpin
..snip..

Note: mkvirtualenv is optional dependency you can install from here. An alternative, virtualenv, also exists. Please
refer to the virtualenv documentation for more details.

To deactivate the virtualenv

(linchpin) $ deactivate
$

Then reactivate the virtualenv

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required

(linchpin) $ pip install linchpin[docs]
(linchpin) $ pip install linchpin[tests]

Virtual Environments and SELinux

When using a virtualenv with SELinux enabled, LinchPin may fail due to an error related to with the libselinux-python
libraries. This is because the libselinux-python binary needs to be enabled in the Virtual Environment. Because this
library affects the filesystem, it isn’t provided as a standard python module via pip. The RPM must be installed, then
a symlink must occur.

(linchpin) $ sudo dnf install libselinux-python
.. snip ..
(linchpin) $ echo ${VIRTUAL_ENV}
/path/to/virtualenvs/linchpin
(linchpin) $ export VENV_LIB_PATH=lib/python2.7/site-packages
(linchpin) $ export LIBSELINUX_PATH=/usr/lib64/python2.7/site-packages # make sure to
→˓verify this location
(linchpin) $ ln -s ${LIBSELINUX_PATH}/selinux ${VIRTUAL_ENV}/${VENV_LIB_PATH}
(linchpin) $ ln -s ${LIBSELINUX_PATH}/_selinux.so ${VIRTUAL_ENV}/${VENV_LIB_PATH}

Note: A script is provided to do this work at scripts/install_selinux_venv.sh

Installing on Fedora 26

Install RPM pre-reqs

1.1. Getting Started 5

http://virtualenvwrapper.readthedocs.io/en/latest/install.html
https://virtualenv.pypa.io/en/stable/
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/scripts/install_selinux_venv.sh

LinchPin Documentation, Release 1.6.6rc1

$ sudo dnf -y install python-virtualenv libffi-devel openssl-devel libyaml-devel gmp-
→˓devel libselinux-python make gcc redhat-rpm-config libxml2-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Note: The default workspace is $PWD, but can be set using the $WORKSPACE variable.

Installing on RHEL 7.4

Tested on RHEL 7.4 Server VM which was kickstarted and pre-installed with the following YUM package-groups and
RPMs:

* @core

* @base

* vim-enhanced

* bash-completion

* scl-utils

* wget

For RHEL 7, it is assumed that you have access to normal RHEL7 YUM repos via RHSM or by pointing at your own
http YUM repos, specifically the following repos or their equivalents:

* rhel-7-server-rpms

* rhel-7-server-optional-rpms

Install pre-req RPMs via YUM:

$ sudo yum install -y libffi-devel openssl-devel libyaml-devel gmp-devel libselinux-
→˓python make gcc redhat-rpm-config libxml2-devel libxslt-devel libxslt-python
→˓libxslt-python

To get a working python 2.7 pip and virtualenv either use EPEL

$ sudo rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Install python pip and virtualenv:

6 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

$ sudo yum install -y python2-pip python-virtualenv

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install linchpin

Inside the virtualenv, upgrade pip and setuptools because the EPEL versions are too old.

(linchpin) $ pip install -U pip
(linchpin) $ pip install -U setuptools

Install linchpin

(linchpin) $ pip install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the
project.

$ git clone git://github.com/CentOS-PaaS-SIG/linchpin
..snip..
$ cd linchpin
$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip install file://$PWD/linchpin

linchpin setup : Automatic Dependency installation:

From version 1.6.5 linchpin includes linchpin setup commandline option to automate installations of linchpin depen-
dencies. linchpin setup uses built in ansible-playbooks to carryout the installations.

Usage: .. code-block:: bash

$ linchpin setup # by default linchpin installs all the dependencies

1.1.2 LinchPin Initialization

1.1. Getting Started 7

LinchPin Documentation, Release 1.6.6rc1

$ linchpin init simple
Created destination workspace: /tmp/simple
$ cd /tmp/simple
$ linchpin up

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 1
Action: up

Target Run ID uHash Exit Code

simple 1 7735aa 0

After running the commands above, LinchPin should be able to provision for you. We’ll use linchpin init and linchpin
fetch throughout this tutorial to get you familiar with its inner workings.

It’s a minimal setup, using the dummy provider. We’ll get more into those in the upcoming parts of this tutorial.

Now that LinchPin is working, the simple workspace is in place, let’s learn more about Workspaces.

Note: If you were unable to get LinchPin successfully installed and/or working, please see the troubleshooting
documentation.

1.1.3 Workspaces

What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem.
The default is the current directory. The workspace can also be passed into the linchpin command line with the
--workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

In our simple example, the workspaces is /tmp/simple.

A workspace requires only one file, the PinFile. This file is the cornerstone to LinchPin provisioning. It’s a YAML
file, written with declarative syntax. This means the PinFile is written to explain how things should be provisioned
after running linchpin up.

Looking at the simple workspace, you’ll see that it has a few other items.

$ pwd
/tmp/simple
$ ls
inventories PinFile PinFile.json README.rst resources

Ignoring everything but the PinFile for now, it’s clear that other files and directories will exist in a workspace. Let’s
have a closer look at the components of a PinFile.

1.1.4 PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a
resource for provisioning. An example Pinfile is shown.

The PinFile in the simple workspace is shown below.

8 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

1 ---
2 simple:
3 topology:
4 topology_name: simple
5 resource_groups:
6 - resource_group_name: simple
7 resource_group_type: dummy
8 resource_definitions:
9 - name: web
10 role: dummy_node
11 count: 2

The PinFile collects the given topology and layout into one place. It’s grouped together in a target.

Note: Each of the lines of this PinFile are numbered to help identify lines discussed throughout this section. Each
will be denoted with a superscript1 next to its description.

Target

In this PinFile, the target2 is the first line simple, just like the name of the workspace. The target is what LinchPin
performs actions upon. For instance, typing linchpin up causes the PinFile to be read, and all targets evaluated.
The simple target would be found, and then the resources listed would be provisioned.

A target will have subcomponents, which tell linchpin what it should do and how. Currently, those are topology,
layout, and hooks. For now, we will just cover the topology and its components.

Topology

A topology3 consists of several items. First and foremost is the topology_name4, followed by one or more
resource_groups5. In this PinFile, there is only one resource group.

Resource Group

A resource group contains several items, minimally, it will have a resource_group_name6, and a resource_group_type7.
The main component of a resource group, it its resource_definitions8 section.

Resource Definitions

Within a resource group, multiple resource definitions can exist. In many cases, there are desires for two different
resources to be provisioned within a resource group. In this example, there is only one. Each provider has its own
constraints for what is required. There are some common fields, however. In the example above, there is name9, role10,
and count11.

Note: The role relates to the ansible role used to perform provisioning. In this case, that’s the dummy_node role. But
many providers have multiple roles.

Definitions help, but lets see it in action.

1.1. Getting Started 9

LinchPin Documentation, Release 1.6.6rc1

Note: More detail about the PinFile can be found in the PinFiles document.

1.1.5 Up

It’s time to provision your first LinchPin resources.

1 [/tmp/simple]$ linchpin up
2 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

3 [WARNING]: No inventory was parsed, only implicit localhost is available

4 Action 'up' on Target 'simple' is complete

5 ID: 10
6 Action: up

7 Target Run ID uHash Exit Code

8 simple 2 3a4038 0

In just a few seconds, the command will finish. Because the simple target provides only the dummy_node resource, no
actual instances are provisioned. However, a representation can be found at /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-3a4038-0.example.net
web-3a4038-1.example.net

More importantly, there are several other things to note. First off, The linchpin command has two basic actions,
up and destroy. Each should be pretty self-explanatory.

Summary

Upon completion of every action, there is a summary that is provided. This summary provides details which can be
used to repeat the process, or for further reporting with linchpin journal. Let’s cover the process in detail.

uHash

The Unique-ish Hash, or uHash8 provides a way for each instance to be unique within a set of resources. The uHash
is used throughout LinchPin with reporting, idempotency, inventories, etc. The uHash is configurable, but defaults to
a sha256 hash of some unique data, trimmed to 6 characters.

Run ID

The Run ID8 can be used for idempotency. The Run ID is used for a specific target. Passing -r <run-id> to
linchpin up or linchpin destroy along with the target will provide an idempotent up or destroy action.

$ linchpin up --run-id 2 simple

.. snip ..

(continues on next page)

10 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

Action 'up' on Target 'simple' is complete

ID: 11
Action: up

Target Run ID uHash Exit Code

simple 3 3a4038 0

The thing to notice here is that the uHash is the same here as in the original up action above. This provides idempotency
when provisioning.

ID

Similar to the Run ID explained above, the Transaction ID, or ID5, is provided for idempotency. If desired, the entire
transaction can be repeated using this value. Unlike the Run ID, however, the Transaction ID can be used to repeat the
entire transaction (multiple targets). As with Run ID, passing -t <tx-id> will provide idempotent an idempotent
up or destroy action.

$ linchpin up --tx-id 10

.. snip ..

ID: 12
Action: up

Target Run ID uHash Exit Code

simple 4 3a4038 0

Note: All targets are executed when using -t/--tx-id. This differs from -r/--run-id where only one target
can be supplied per Run ID. This is useful when multiple targets are executed from the PinFile.

Exit Code

A common desire is to check the exit code7. This is provided as an indicator of the action’s success or failure.
Commonly, post actions are performed upon resources (eg. configure the system, adding logins, setting up security,
etc.)

1.1.6 Destroy

To destroy the previously provisioned resources, use linchpin destroy.

$ linchpin destroy
[WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

[WARNING]: No inventory was parsed, only implicit localhost is available

Action 'destroy' on Target 'simple' is complete

(continues on next page)

1.1. Getting Started 11

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

ID: 13
Action: destroy

Target Run ID uHash Exit Code

simple 5 3a4038 0

As with linchpin up, destroy provides a summary of the action taken. In this case, however, the resources have
been terminated and cleaned up. With the dummy_node role, the resources are remove from the file.

$ cat /tmp/dummy.hosts
$ wc -l /tmp/dummy.hosts
0 /tmp/dummy.hosts

This concludes the introduction of the LinchPin getting started tutorial. For more information, see Providers.

See also:

Commands (CLI) Linchpin Command-Line Interface

workflow Common LinchPin Workflows

Managing Resources Managing Resources

Providers Providers in Detail

1.2 Documentation

1.2.1 Running LinchPin

This guide will walk you through the basics of using LinchPin. LinchPin is a command-line utility, a Python API, and
Ansible playbooks. As this guide is intentionally brief to get you started, a more complete version can be found in the
documentation links found to the left in the index.

Topics

• Running LinchPin

– Running the linchpin command

* Getting Help

* Basic Usage

* Options and Arguments

* Combining Options

* Common Usage

· Verbose Output

· Specify an Alternate PinFile

· Specify an Alternate Workspace

· Provide Credentials

12 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

– Workspaces

* Initialization (init)

– Resources

* Topology

* Inventory Layout

* PinFile

– Provisioning (up)

– Teardown (destroy)

– Authentication

* Credentials

· Credentials File

· Using Credentials

· Credentials Location

Running the linchpin command

The linchpin CLI is used to perform tasks related to managing resources. For detail about a specific command, see
Commands (CLI).

Getting Help

Getting help from the command line is very simple. Running either linchpin or linchpin --help will yield
the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

linchpin: hybrid cloud orchestration

Options:
-c, --config PATH Path to config file
-p, --pinfile PINFILE Use a name for the PinFile different from

the configuration.
-d, --template-data TEMPLATE_DATA

Template data passed to PinFile template
-o, --output-pinfile OUTPUT_PINFILE

Write out PinFile to provided location
-w, --workspace PATH Use the specified workspace. Also works if

the familiar Jenkins WORKSPACE environment
variable is set

-v, --verbose Enable verbose output
--version Prints the version and exits
--creds-path PATH Use the specified credentials path. Also

works if CREDS_PATH environment variable is
set

-h, --help Show this message and exit.

(continues on next page)

1.2. Documentation 13

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

Commands:
init Initializes a linchpin project.
up Provisions nodes from the given target(s) in...
destroy Destroys nodes from the given target(s) in...
fetch Fetches a specified linchpin workspace or...
journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided
subcommand.

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

Provisions nodes from the given target(s) in the given PinFile.

targets: Provision ONLY the listed target(s). If omitted, ALL targets
in the appropriate PinFile will be provisioned.

run-id: Use the data from the provided run_id value

Options:
-r, --run-id run_id Idempotently provision using `run-id` data
-h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

Basic Usage

The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in
the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin
is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

Options and Arguments

The most common argument available in linchpin is the TARGET . Generally, the PinFile will have many targets
available, but only one or two will be requested.

14 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

• --verbose (-v) to get more output

• --config (-c) to specify an alternate configuration file

• --workspace (-w) to specify an alternate workspace

Combining Options

The linchpin command also allows combinining of general options with subcommand options. A good example
of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This
can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the
subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating
the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

1.2. Documentation 15

LinchPin Documentation, Release 1.6.6rc1

Common Usage

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note: The value provided to the --creds-path option is a directory, NOT a file. This is generally due to the
topology containing the filename where the credentials are stored.

Workspaces

Initialization (init)

Running linchpin initwill generate the workspace directory structure, along with an example PinFile, topology,
and layout files. Performing the following tasks will generate a simple dummy PinFile, topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ tree
.

credentials
hooks

(continues on next page)

16 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

inventories
layouts

dummy-layout.yml
PinFile
topologies

dummy-topology.yml

Resources

With LinchPin, resources are king. Defining, managing, and generating outputs are all done using a declarative syntax.
Resources are managed via the PinFile. The PinFile can hold two additional files, the topology, and layout. Linchpin
also supports hooks.

Topology

The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look
after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:

- resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

- name: "web"
role: "dummy_node"
count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provi-
sioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in
the source code.

Inventory Layout

An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources
should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the
topology and the layout data. A layout is shown here.

inventory_layout:

vars:
hostname: __IP__

hosts:
example-node:

count: 1
host_groups:

- example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A
host group called example will be added to the Ansible static inventory. The all group always exists, and includes all
provisioned hosts.

1.2. Documentation 17

https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/topologies

LinchPin Documentation, Release 1.6.6rc1

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note: A keen observer might notice the filename and hostname are appended with -0446. This value is called the
uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname
as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at
the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note: Additional layout examples can be found in the source code.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a
resource for provisioning. An example Pinfile is shown.

dummy_cluster:
topology: dummy-topology.yml
layout: dummy-layout.yml

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

More detail about the PinFile can be found in the PinFiles document.

Additional PinFile examples can be found in the source code

Provisioning (up)

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command
linchpin up should provision the resources and inventory files based upon the topology_name value. In this
case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 70 0446 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered
elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

(continues on next page)

18 Chapter 1. Why LinchPin?

https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/layouts
https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

Teardown (destroy)

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources
have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make
sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider)
to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology
during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note: The teardown functionality is slightly more limited around ephemeral resources, like networking, storage,
etc. It is possible that a network resource could be used with multiple cloud instances. In this way, performing a
linchpin destroy does not teardown certain resources. This is dependent on each providers implementation.

Authentication

Some Providers require authentication to acquire managing_resources. LinchPin provides tools for these providers to
authenticate. The tools are called credentials.

Credentials

Credentials come in many forms. LinchPin wants to let the user control how the credentials are formatted. In this way,
LinchPin supports the standard formatting and options for a provider. The only constraints that exist are how to tell
LinchPin which credentials to use, and where they credentials data resides. In every case, LinchPin tries to use the
data similarly to the way the provider might.

1.2. Documentation 19

LinchPin Documentation, Release 1.6.6rc1

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also:

Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first is which credentials to use. The second is
where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are described by specifying the file, then the profile.
As shown above, the filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:

- resource_group_name: "aws"
resource_group_type: "aws"
resource_definitions:

- name: demo-day
flavor: m1.small
role: aws_ec2
region: us-east-1
image: ami-984189e2
count: 1

credentials:
filename: aws.key
profile: default

The important part in the above topology is the credentials section. Adding credentials like this will look up, and use
the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is ~/.config/linchpin.

Hint: The default_credentials_path value uses the interpolated default_config_path value, and can be overridden in
the linchpin.conf.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

20 Chapter 1. Why LinchPin?

https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf#L22
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/linchpin.conf

LinchPin Documentation, Release 1.6.6rc1

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note: The aws.key file could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

See also:

Commands (CLI) Linchpin Command-Line Interface

workflow Common LinchPin Workflows

Managing Resources Managing Resources

Providers Providers in Detail

1.2.2 General Configuration

Managing LinchPin requires a few configuration files. Most configurations are stored in the linchpin configuration
file.

Note: in versions before 1.5.1, the file was called linchpin.conf. This changed in 1.5.1 due to backward compatibility
requirements, and the need to load configuration defaults. The linchpin.conf continues to work as expected.

The settings in this file are loaded automatically as defaults.

However, it’s possible to override any setting in linchpin. For the command line shell, three different locations are
checked for linchpin.conf files. Files are checked in the following order:

1. /etc/linchpin.conf

2. ~/.config/linchpin/linchpin.conf

3. /path/to/workspace/linchpin.conf

The LinchPin configuration parser supports overriding and extending configurations. If linchpin finds the same section
and setting in more than one file, the header that was parsed more recently will provide the configuration. In this
way user can override default configurations. Commonly, this is done by placing a linchpin.conf in the root of the
workspace.

Adding/Overriding a Section

New in version 1.2.0

Adding a section to the configuration is simple. The best approach is to create a linchpin.conf in the appropriate
location from the locations above.

Once created, add a section. The section can be a new section, or it can overwrite an existing section.

1.2. Documentation 21

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/linchpin.constants

LinchPin Documentation, Release 1.6.6rc1

[lp]
move the rundb_connection to a global scope
rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

module_folder = library
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

rundb_type = TinyRunDB
rundb_conn_type = file
rundb_schema = {"action": "",

"inputs": [],
"outputs": [],
"start": "",
"end": "",
"rc": 0,
"uhash": ""}

rundb_hash = sha256

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p
default_pinfile = PinFile

Warning: For version 1.5.0 and earlier, if overwriting a section, all entries from the entire section must be
updated.

Overriding a configuration item

New in version 1.5.1

Each item within a section can be a new setting, or override a default setting, as shown.

[lp]
move the rundb_connection to a global scope
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

As can be plainly seen, the configuration has been updated to use a different path to the rundb_conn. This section
now uses a user-based RunDB, which can be useful in some scenarios.

Useful Configuration Options

These are some configuration options that may be useful to adjust for your needs. Each configuration option listed
here is in a format of section.option.

Note: For clarity, this would appear in a configuration file where the section is in brackets (eg. [section]) and the
option would have a option = value set within the section.

lp.external_providers_path New in version 1.5.0

Default value: %(default_config_path)s/linchpin-x

Providers playbooks can be created outside of the core of linchpin, if desired. When using these external
providers, linchpin will use the external_providers_path to lookup the playbooks and attempt to run them.

See Providers for more information.

22 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

lp.rundb_conn New in version 1.2.0

Default value:

• v1.2.0: /home/user/.config/linchpin/rundb-<macaddress>.json

• v1.2.2+: /path/to/workspace/.rundb/rundb.json

The RunDB is a single json file, which records each transaction involving resources. A run_id and uHash are
assigned, along with other useful information. The lp.rundb_conn describes the location to store the RunDB so
data can be retrieved during execution.

evars._async Updated in version 1.2.0

Default value: False

Previous key name: evars.async

Some providers (eg. openstack, aws, ovirt) support asynchronous provisioning. This means that a topology
containing many resources would provision or destroy all at once. LinchPin then waits for responses from these
asynchronous tasks, and returns the success or failure. If the amount of resources is large, asynchronous tasks
reduce the wait time immensely.

Reason for change: Avoiding conflict with existing Ansible variable.

Starting in Ansible 2.4.x, the async variable could not be set internally. The _async value is now passed in and
sets the Ansible async variable to its value.

evars.default_credentials_path Default value: %(default_config_path)s

Storing credentials for multiple providers can be useful. It also may be useful to change the default here to point
to a given location.

Note: The --creds-path option, or $CREDS_PATH environment variable overrides this option

evars.inventory_file Default value: None

If the unique-hash feature is turned on, the default inventory_file value is built up by combining the workspace
path, inventories_folder topology_name, the uhash, and the extensions.inventory configuration value. The re-
sulting file might look like this:

/path/to/workspace/inventories/dummy_cluster-049e.inventory

It may be desired to store the inventory without the uhash, or define a completely different structure altogether.

ansible.console Default value: False

This configuration option controls whether the output from the Ansible console is printed. In the linchpin
CLI tool, it’s the equivalent of the -v (--verbose) option.

1.2.3 Commands (CLI)

This document covers the linchpin Command Line Interface (CLI) in detail. Each page contains a description and
explanation for each component. For an overview, see Running the linchpin command.

linchpin init

Running linchpin initwill generate the workspace directory structure, along with an example PinFile, topology,
and layout files. Performing the following tasks will generate a simple dummy PinFile, topology, and layout structure.

1.2. Documentation 23

LinchPin Documentation, Release 1.6.6rc1

$ pwd
/tmp/workspace
$ linchpin init
PinFile and file structure created at /tmp/workspace
$ tree
.

credentials
hooks
inventories
layouts

dummy-layout.yml
PinFile
topologies

dummy-topology.yml

linchpin up

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command
linchpin up should provision the resources and inventory files based upon the topology_name value. In this
case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 70 0446 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered
elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

linchpin destroy

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources
have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make
sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider)
to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology
during teardown.

24 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note: The teardown functionality is slightly more limited around ephemeral resources, like networking, storage,
etc. It is possible that a network resource could be used with multiple cloud instances. In this way, performing a
linchpin destroy does not teardown certain resources. This is dependent on each providers implementation.

See also:

Providers

linchpin journal

Upon completion of any provision (up) or teardown (destroy) task, there’s a record that is created and stored in the
RunDB. The linchpin journal command displays data about these tasks.

$ linchpin journal --help
Usage: linchpin journal [OPTIONS] TARGETS

Display information stored in Run Database

view: How the journal is displayed

'target': show results of transactions on listed targets
(or all if omitted)

'tx': show results of each transaction, with results
of associated targets used

(Default: target)

count: Number of records to show per target

targets: Display data for the listed target(s). If omitted, the latest
records for any/all targets in the RunDB will be displayed.

fields: Comma separated list of fields to show in the display.
(Default: action, uhash, rc)

(available fields are: uhash, rc, start, end, action)

Options:
--view VIEW Type of view display (default: target)
-c, --count COUNT (up to) number of records to return (default: 3)

(continues on next page)

1.2. Documentation 25

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

-f, --fields FIELDS List the fields to display
-h, --help Show this message and exit.

There are two specific ways to view the data using the journal, by ‘target’ and ‘transactions (tx)’.

Target

The default view, ‘target’, is displayed using the target. The data displayed to the screen shows the last three (3) tasks
per target, along with some useful information.

$ linchpin journal --view=target dummy-new

Target: dummy-new
run_id action uhash rc
--
5 up 0658 0
4 destroy cf22 0
3 up cf22 0

Note: The ‘target’ view is the default, making the –view optional.

The target view can show more data as well. Fields (-f, --fields) and count (-c, --count) are useful
options.

$ linchpin journal dummy-new -f action,uhash,end -c 5

Target: dummy-new
run_id action uhash end
--
6 up cd00 12/15/2017 05:12:52 PM
5 up 0658 12/15/2017 05:10:52 PM
4 destroy cf22 12/15/2017 05:10:29 PM
3 up cf22 12/15/2017 05:10:17 PM
2 destroy 6d82 12/15/2017 05:10:06 PM
1 up 6d82 12/15/2017 05:09:52 PM

It is simple to see that the output now has five (5) records, each containing the run_id, action, uhash, and end date.

The data here can be used to perform idempotent (repetitive) tasks, like running the up action on run_id: 5 again.

$ linchpin up dummy-new -r 6
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 7 cd00 0

What might not be immediately obvious, is that the uhash on Run ID: 7 is identical to the run_id: 6 shown in the
previous linchpin journal output. Essentially, the same task was run again.

Note: If LinchPin is configured with the unique-hash feature, and the provider supports naming, resources can have
unique names. These features are turned off by default.

26 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

The destroy action will automatically look up the last task with an up action and destroy it. If other resources are
needed to be destroyed, a run_id should be passed to the task.

$ linchpin destroy dummy-new -r 5
Action 'destroy' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 8 0658 0

Transactions

The transaction view, provides data based upon each transaction.

$ linchpin journal --view tx --count 1

ID: 130 Action: up

Target Run ID uHash Exit Code

dummy-new 279 920c 0
libvirt 121 ef96 0

===

In the future, the transaction view will also provide output for these items.

linchpin fetch

The linchpin fetch command provides a simple way to access a resource from a remote location. One could
simply perform a git clone, or use wget to download a workspace. However, linchpin fetch makes this
process simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

Fetches a specified linchpin workspace or component from a remote location

Options:
-t, --type TYPE Which component of a workspace to fetch.

(Default: workspace)
-r, --root ROOT Use this to specify the location of the

workspace within the root url. If root is not
set, the root of the given remote will be used.

--dest DEST Workspaces destination, the fetched workspace
will be relative to this location. (Overrides
-w/--workspace)

--branch REF Specify the git branch. Used only with git
protocol (eg. master).

--git Remote is a Git repository (default)
--web Remote is a web directory
--nocache Do not check the cached time, just copy the

data to the destination
-h, --help Show this message and exit.

1.2. Documentation 27

LinchPin Documentation, Release 1.6.6rc1

linchpin validate

Validate Command

The purpose of the validate command is to determine whether topologies and layouts are syntactically valid. If not, it
will provide a list of errors that occured during validation

The command linchpin validate looks at the topology and layout files for each target in a given PinFile. If the topology
is not valid under the current schema, it will attempt to convert the topology to an older schema and try again. If the
topology is still invalid, the command will report the topology and a list of errors found.

Invalid Topologies

Here is a simple PinFile and topology file. The topology file has some errors and will not validate.

libvirt-new:

topology: libvirt-new.yml
layout: libvirt.yml

libvirt:
topology: libvirt.yml
layout: libvirt.yml

libvirt-network:
topology: libvirt-network.yml

topology_name: libvirt-new
resource_groups:

- resource_group_name: libvirt-new
resource_group_type: libvirt
resource_definitions:

- role: libvirt_node
uri: qemu:///system
count: "1"
image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-

→˓GenericCloud-1608.qcow2.xz
memory: 2048
vcpus: 1
arch: x86_64
ssh_key: libvirt
networks:
- name: default
additional_storage: 10G

cloud_config:
users:
- name: herlo
gecos: Clint Savage
groups: wheel
sudo: ALL=(ALL) NOPASSWD:ALL
ssh-import-id: gh:herlo
lock_passwd: true

28 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

$ linchpin validate
topology for target 'libvirt-network' is valid

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups',
→˓[OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type',
→˓'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri',
→˓ 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-
→˓x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch',
→˓'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), (
→˓'hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config',
→˓OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), (
→˓'groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo
→˓'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:

res_defs[0][count]: value for field 'count' must be of type 'integer'
res_defs[0][networks][0][additional_storage]: field 'additional_storage' could

→˓not be recognized within the schema provided
res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

The linchpin validate command can also provide a list of errors against the old schema with the –old-schema flag

$ linchpin validate --old-schema

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups',
→˓[OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type',
→˓'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri',
→˓ 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-
→˓x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch',
→˓'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), (
→˓'hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config',
→˓OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), (
→˓'groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo
→˓'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:

res_defs[0][networks][0][additional_storage]: field 'additional_storage' could
→˓not be recognized within the schema provided

res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

As you can see, validation under both schemas result in an error stating that the field additional_storage could not
be recognized. In this case, there is simply an indentation error. additional_storage is a recognized field within
resource_definitions but not within the networks sub-schema. Other times this unrecognized field may be a spelling
error. Both fields also flag the missing “name” field, which is required. Both of these errors must be fixed in order for
the topology file to validate. Because making count a string only results in an error when validating against the old
schema, this field does not have to be changed in order for the topology file to pass validation. However, it is best to
change it anyway and keep your topology as up-to-date as possible.

1.2. Documentation 29

LinchPin Documentation, Release 1.6.6rc1

Valid Topologies

The topology below has been fixed so that it will validate under the current schema.

topology_name: libvirt-new
resource_groups:

- resource_group_name: libvirt-new
resource_group_type: libvirt
resource_definitions:

- role: libvirt_node
name: centos71
uri: qemu:///system
count: 1
image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-

→˓GenericCloud-1608.qcow2.xz
memory: 2048
vcpus: 1
arch: x86_64
ssh_key: libvirt
networks:
- name: default

additional_storage: 10G
cloud_config:
users:
- name: herlo
gecos: Clint Savage
groups: wheel
sudo: ALL=(ALL) NOPASSWD:ALL
ssh-import-id: gh:herlo
lock_passwd: true

If linchpin validate is run on a PinFile containing the topology above, this will be the output:

$ linchpin validate
topology for target 'libvirt-new' is valid
topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

1.2.4 Managing Resources

Resources in LinchPin generally consist of Virtual Machines, Containers, Networks, Security Groups, Instances, and
much more. Detailed below are examples of topoologies, layouts, and PinFiles used to manage resources.

PinFiles

These PinFiles represent many combinations of complexity and providers.

PinFiles are processed top to bottom.

YAML

PinFiles written using YAML format:

• PinFile.dummy.yml

30 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.dummy.yml

LinchPin Documentation, Release 1.6.6rc1

• PinFile.openstack.yml

• PinFile.complex.yml

The combined format is only available in v1.5.0+

• PinFile.combined.yml

JSON

New in version 1.5.0

PinFiles written using JSON format.

• PinFile.dummy.json

• PinFile.aws.json

• PinFile.duffy.json

• PinFile.combined.json

• PinFile.complex.json

Jinja2

New in version 1.5.0

These PinFiles are examples of what can be done with templating using Jinja2.

Beaker Template

This template would be processed with a dictionary containing a key named arches.

• PinFile.beaker.template

$ linchpin -p PinFile.beaker.template \
--template-data '{ "arches": ["x86_64", "ppc64le", "s390x"]}' up

Libvirt Template and Data

This template and data can be processed together.

• PinFile.libvirt-mi.template

• Data.libvirt-mi.yml

$ linchpin -vp PinFile.libvirt-mi.template \
--template-data Data.libvirt-mi.yml up

Scripts

New in version 1.5.0

Scripts that generate valid JSON output to STDOUT can be processed and used.

1.2. Documentation 31

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.openstack.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.complex.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.combined.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.dummy.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.aws.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.duffy.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.combined.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.complex.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.beaker.template
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.libvirt-mi.template
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/Data.libvirt-mi.yml

LinchPin Documentation, Release 1.6.6rc1

• generate_dummy.sh

$ linchpin -vp ./scripts/generate_dummy.sh up

Output PinFile

New in version 1.5.0

An output file can be created on an up/destroy action. Simply pass the --output-pinfile option with a path to a
writable file location.

$ linchpin --output-pinfile /tmp/Pinfile.out -vp ./scripts/generate_dummy.sh up
..snip..
$ cat /tmp/Pinfile.out
{

"dummy": {
"layout": {

"inventory_layout": {
"hosts": {

"example-node": {
"count": 3,
"host_groups": [

"example"
]

}
},
"vars": {

"hostname": "__IP__"
}

}
},
"topology": {

"topology_name": "dummy_cluster",
"resource_groups": [

{
"resource_group_name": "dummy",
"resource_definitions": [

{
"count": 3,
"type": "dummy_node",
"name": "web"

},
{

"count": 1,
"type": "dummy_node",
"name": "test"

}
],
"resource_group_type": "dummy"

}
]

}
}

}

32 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/scripts/generate_dummy.sh

LinchPin Documentation, Release 1.6.6rc1

Topologies

These topologies represent many combinations of complexity and providers. Topologies process resource_definitions
top to bottom according to the file.

Topologies have evolved a little and have a slightly different format between versions. However, older versions still
work on v1.5.0+ (until otherwise noted).

The difference is quite minor, except in two providers, beaker and openshift.

Topology Format Pre v1.5.0

topology_name: "dummy_cluster" # topology name
resource_groups:

- resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

- name: "web"
type: "dummy_node" <-- this is called 'type`
count: 1

v1.5.0+ Topology Format

topology_name: "dummy_cluster" # topology name
resource_groups:

- resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

- name: "web"
role: "dummy_node" <-- this is called 'role`
count: 1

The subtle difference is in the resource_definitions section. In the pre-v1.5.0 topology, the key was type, in v1.5.0+,
the key is role.

Note: Pay attention to the callout in the code blocks above.

For details about the differences in beaker and openshift, see ../topology_incompatibilities.

YAML

New in version 1.5.0

Topologies written using YAML format:

• os-server-new.yml

• libvirt-new.yml

• bkr-new.yml

Older topologies, supported in v1.5.0+

1.2. Documentation 33

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-server-new.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt-new.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/bkr-new.yml

LinchPin Documentation, Release 1.6.6rc1

• os-server.yml

• libvirt.yml

• bkr.yml

JSON

New in version 1.5.0

Topologies can be written using JSON format.

• dummy.json

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Jenkins-Slave Template

This topology template would be processed with a dictionary containing one key named arch.

• jenkins-slave.j2

The PinFile.jenkins.yml contains the reference to the jenkins-slave topology.

jenkins-slave:
topology: jenkins-slave.yml
layout: jenkins-slave.yml

See also:

Pinfile.jenkins.j2

$ linchpin -p PinFile.jenkins --template-data '{ "arch": "x86_64" }' up

Layouts

Inventory Layouts (or just layout) describe what an Ansible inventory might look like after provisioning. A layout is
needed because information about the resources provisioned are unknown in advance.

Layouts, like topologies and PinFiles are processed top to bottom according to the file.

YAML

Layouts written using YAML format:

• aws-ec2.yml

• dummy-new.yml

34 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-server.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/bkr.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/dummy.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/jenkins-slave.j2
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.jenkins.j2
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/aws-ec2.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/dummy-new.yml

LinchPin Documentation, Release 1.6.6rc1

JSON

New in version 1.5.0

Layouts can be written using JSON format.

• gcloud.json

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Dummy Template

This layout template would be processed with a dictionary containing one key named node_count.

• dummy.json

The PinFile.dummy.json contains the reference to the dummy.json layout.

{
"dummy": {

"topology": "dummy.json",
"layout": "dummy.json"

}
}

See also:

PinFile.dummy.json

$ linchpin -p PinFile.dummy.json --template-data '{ "node_count": 2 }' up

Advanced layout examples can be found by reading ra_inventory_layouts.

See also:

Providers

1.2.5 Providers

LinchPin has many default providers. This choose-your-own-adventure page takes you through the basics to ensure
success for each.

Openstack

The openstack provider manages multiple types of resources.

1.2. Documentation 35

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/gcloud.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/layouts/dummy.json
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/PinFile.dummy.json

LinchPin Documentation, Release 1.6.6rc1

os_server

Openstack instances can be provisioned using this resource.

• Topology Example

• Ansible module

Note: Currently, the ansible module used is bundled with LinchPin. However, the variables used are identical to the
Ansible os_server module, except for adding a count option.

Topology Schema

Within Linchpin, the os_server resource_definition has more options than what are shown in the examples above. For
each os_server definition, the following options are available.

Parameter required type ansible value comments
name true string name
flavor true string flavor
image true string image
region false string region
count false integer count
keypair false string key_name
security_groups false string security_groups
fip_pool false string floating_ip_pools
nics false string networks
userdata false string userdata
volumes false list volumes
boot_from_volume false string boot_from_volume
terminate_volume false string terminate_volume
volume_size false string volume_size
boot_volume false string boot_volume

os_obj

Openstack Object Storage can be provisioned using this resource.

• Topology Example

• Ansible module

os_vol

Openstack Cinder Volumes can be provisioned using this resource.

• Topology Example

• Ansible module

36 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-server-new.yml
http://docs.ansible.com/ansible/latest/os_server_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-obj-new.yml
http://docs.ansible.com/ansible/latest/os_object_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-vol-new.yml
http://docs.ansible.com/ansible/latest/os_volume_module.html

LinchPin Documentation, Release 1.6.6rc1

os_sg

Openstack Security Groups can be provisioned using this resource.

• Topology Example

• Ansible Security Group module

• Ansible Security Group Rule module

os_network

Openstack networks can be provisioned using this resource.

• Topology Example

• Ansible os_network module

os_router

Openstack routers can be provisioned using this resource. * Topology Example * Ansible os_router module

os_subnet

Openstack subnets can be provisioned using this resource. * Topology Example * Ansible os_router module

Additional Dependencies

No additional dependencies are required for the Openstack Provider.

Credentials Management

Openstack provides several ways to provide credentials. LinchPin supports some of these methods for passing creden-
tials for use with openstack resources.

LinchPin honors the openstack environment variables such as $OS_USERNAME, $OS_PROJECT_NAME, etc.

See the openstack documentation cli documentation for details.

Note: No credentials files are needed for this method. When LinchPin calls the openstack provider, the environment
variables are automatically picked up by the openstack Ansible modules, and passed to openstack for authentication.

Openstack provides a simple file structure using a file called clouds.yaml, to provide authentication to a particular
tenant. A single clouds.yaml file might contain several entries.

clouds:
devstack:
auth:

auth_url: http://192.168.122.10:35357/
project_name: demo
username: demo

(continues on next page)

1.2. Documentation 37

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-sg-new.yml
http://docs.ansible.com/ansible/latest/os_security_group_module.html
http://docs.ansible.com/ansible/latest/os_security_group_rule_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-network.yml
https://docs.ansible.com/ansible/2.5/modules/os_network_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-router.yml
https://docs.ansible.com/ansible/latest/modules/os_router_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/os-subnet.yml
https://docs.ansible.com/ansible/latest/modules/os_subnet_module.html
https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage
https://docs.openstack.org/os-client-config/latest/user/configuration.html

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

password: 0penstack
region_name: RegionOne

trystack:
auth:

auth_url: http://auth.trystack.com:8080/
project_name: trystack
username: herlo-trystack-3855e889
password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An openstack topology can have a credentials section for each resource_group, which requires the filename, and
the profile name.

topology_name: topo
resource_groups:

- resource_group_name: openstack
resource_group_type: openstack
resource_definitions:

.. snip ..

credentials:
filename: clouds.yaml
profile: devstack

Provisioning with credentials uses the --creds-path option. Assuming the clouds.yaml file was placed in
~/.config/openstack, and the topology described above, a provision task could occur.

$ linchpin -v --creds-path ~/.config/openstack up

Note: The clouds.yaml could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="/path/to/credential_dir/"
$ linchpin -v up

Libvirt

The libvirt provider manages two types of resources.

libvirt_node

Libvirt Domains (or nodes) can be provisioned using this resource.

• Topology Example

• Ansible module

38 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt-new.yml
http://docs.ansible.com/ansible/latest/virt_module.html

LinchPin Documentation, Release 1.6.6rc1

Topology Schema

Within Linchpin, the libvirt_node resource_definition has more options than what are shown in the examples above.
For each libvirt_node definition, the following options are available.

Parameter req’d type where used default comments
role true string role
name true string module: name
vcpus true string xml: vcpus
memory true string xml: memory 1024
driver false string xml: driver

(kvm, qemu)
kvm

arch false string xml: arch x86_64
boot_dev false string xml: boot_dev hd
networks false list xml: networks

• name
(req)

• ip
• mac

Assigns the domain to a network by
name. Each device is named with an
incremented value (eth0)

Note: Network must exist

image_src false string virt-install
network_bridge false string virt-install virbr0
ssh_key false string role resource_group_name
remote_user false string role ansible_user_id
cloud_config false list role http://cloudinit.readthedocs.io is

used here
additional_storage false string role 1G
uri false string module: uri qemu:///system
count false string N/A

libvirt_network

Libvirt networks can be provisioned. If a libvirt_network is to be used with a libvirt_node, it must precede it.

• Topology Example

• Ansible module

Topology Schema

Within Linchpin, the libvirt_network resource_definition has more options than what are shown in the examples above.
For each libvirt_network definition, the following options are available.

1.2. Documentation 39

http://cloudinit.readthedocs.io
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/libvirt-el7net.yml
http://docs.ansible.com/ansible/latest/virt_net_module.html

LinchPin Documentation, Release 1.6.6rc1

Parameter req’d type where used default comments
role true string role
name true string module: name
uri false string module: name qemu:///system
ip true string xml: ip
dhcp_start false string xml: dhcp_start
dhcp_end false string xml: dhcp_end
domain false string xml: domain Automated DNS for guests
forward_mode false string xml: forward nat
forward_dev false string xml: forward
bridge false string xml: bridge

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

Additional Dependencies

The libvirt resource group requires several additional dependencies. The following must be installed.

• libvirt-devel

• libguestfs-tools

• python-libguestfs

• libvirt-python

• python-lxml

For a Fedora 26 machine, the dependencies would be installed using dnf.

$ sudo dnf install libvirt-devel libguestfs-tools python-libguestfs
$ pip install linchpin[libvirt]

Additionally, because libvirt downloads images, certain SELinux libraries must exist.

• libselinux-python

For a Fedora 26 machine, the dependencies would be installed using dnf.

$ sudo dnf install libselinux-python

If using a python virtual environment, the selinux libraries must be symlinked. Assuming a virtualenv of ~/venv,
symlink the libraries.

$ export LIBSELINUX_PATH=/usr/lib64/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/selinux ~/venv/lib/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/_selinux.so ~/venv/lib/python2.7/site-packages

Copying Images

New in version 1.5.1

40 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

By default, LinchPin manages the libvirt images in a directory that is accessible only by the root user. However,
adjustments can be made to allow an unprivileged user to manage Libvirt via LinchPin. These settings can be modified
in the linchpin.conf

This configuration adjustment of linchpin.conf may work for the unprivileged user herlo.

[evars]
libvirt_image_path = ~/libvirt/images/
libvirt_user = herlo
libvirt_become = no

The directory will be created automatically by LinchPin. However, the user may need additional rights, like group
membership to access Libvirt. Please see https://libvirt.org for any additional configurations.

Credentials Management

Libvirt doesn’t require credentials via LinchPin. Multiple options are available for authenticating against a Libvirt
daemon (libvirtd). Most methods are detailed here. If desired, the uri for the resource can be set using one of these
mechanisms.

By default, however, libvirt requires sudo access to use. To allow users without sudo access to provision libvirt
instances, run the following commands on the target machine:

1. Create the libvirt group if it does not exist

$ getent group | grep libvirt
$ groupadd -g 7777 libvirt

2. Add user account to libvirt group

$ usermod -aG libvirt <user>

3. Edit libvirtd configuration to add group

$ cat <<EOF >>/etc/libvirt/libvirtd.conf
unix_sock_group = "libvirt"
unix_sock_rw_perms = "0770"
EOF

4. Restart the libvirtd daemon

$ systemctl restart libvirtd

The next time the user logs in, they will be able to provision libvirt disks without sudo access

Amazon Web Services

The Amazon Web Services (AWS) provider manages multiple types of resources.

aws_ec2

AWS Instances can be provisioned using this resource.

• Topology Example

• Topology Example w/ VPC

1.2. Documentation 41

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/linchpin.conf
https://libvirt.org
https://libvirt.org/auth.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-ec2-new.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-ec2-vpc.yml

LinchPin Documentation, Release 1.6.6rc1

• aws_ec2 module

Topology Schema

Within Linchpin, the aws_ec2 resource_definition has more options than what are shown in the examples above. For
each aws_ec2 definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
name true string instance_tags name is set as an instance_tag value.
flavor true string instance_type
image true string image
region false string region
count false integer count
keypair false string key_name
security_group false string / list group
vpc_subnet_id false string vpc_subnet_id
assign_public_ip false string assign_public_ip

EC2 Inventory Generation

If an instance has a public IP attached, its hostname in public DNS, if available, will be provided in the generated
Ansible inventory file, and if not the public IP address will be provided.

For instances which have a private IP address for VPC usage, the private IP address will be provided since private EC2
DNS hostnames (e.g. ip-10-0-0-1.ec2.internal) will not typically be resolvable outside of AWS.

For instances with both a public and private IP address, the public address is always provided instead of the private
address, so as to avoid duplicate runs of Ansible on the same host via the generated inventory file.

aws_ec2_key

AWS SSH keys can be added using this resource.

• Topology Example

• ec2_key module

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

aws_s3

AWS Simple Storage Service buckets can be provisioned using this resource.

• Topology Example

• aws_s3 module

42 Chapter 1. Why LinchPin?

http://docs.ansible.com/ansible/latest/ec2_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-ec2-key-new.yml
http://docs.ansible.com/ansible/latest/ec2_key_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-s3-new.yml
http://docs.ansible.com/ansible/latest/aws_s3_module.html

LinchPin Documentation, Release 1.6.6rc1

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

aws_sg

AWS Security Groups can be provisioned using this resource.

• Topology Example

• ec2_group module

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

Additional Dependencies

No additional dependencies are required for the AWS Provider.

Credentials Management

AWS provides several ways to provide credentials. LinchPin supports some of these methods for passing credentials
for use with AWS resources.

One method to provide AWS credentials that can be loaded by LinchPin is to use the INI format that the AWS CLI
tool uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also:

Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first is which credentials to use. The second is
where to find the credentials data.

1.2. Documentation 43

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/aws-sg-new.yml
http://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

LinchPin Documentation, Release 1.6.6rc1

Using Credentials

In the topology, a user can specific credentials. The credentials are described by specifying the file, then the profile.
As shown above, the filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:

- resource_group_name: "aws"
resource_group_type: "aws"
resource_definitions:

- name: demo-day
flavor: m1.small
role: aws_ec2
region: us-east-1
image: ami-984189e2
count: 1

credentials:
filename: aws.key
profile: default

The important part in the above topology is the credentials section. Adding credentials like this will look up, and use
the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is ~/.config/linchpin.

Hint: The default_credentials_path value uses the interpolated default_config_path value, and can be overridden in
the linchpin.conf.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note: The aws.key file could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

Environment Variables

LinchPin honors the AWS environment variables

44 Chapter 1. Why LinchPin?

https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf#L22
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/linchpin.conf

LinchPin Documentation, Release 1.6.6rc1

Provisioning

Provisioning with credentials uses the --creds-path option.

$ linchpin -v --creds-path ~/.config/aws up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/aws"
$ linchpin -v up

Google Cloud Platform

The Google Cloud Platform (gcloud) provider manages one resource, gcloud_gce.

gcloud_gce

Google Compute Engine (gce) instances are provisioned using this resource.

• Topology Example

• Ansible module

Additional Dependencies

No additional dependencies are required for the Google Cloud (gcloud) Provider.

Credentials Management

Google Compute Engine provides several ways to provide credentials. LinchPin supports some of these methods for
passing credentials for use with openstack resources.

Environment Variables

LinchPin honors the gcloud environment variables.

Configuration Files

Google Cloud Platform provides tooling for authentication. See https://cloud.google.com/appengine/docs/standard/
python/oauth/ for options.

Beaker

The Beaker (bkr) provider manages a single resource, bkr_server.

1.2. Documentation 45

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/gce-new.yml
http://docs.ansible.com/ansible/latest/gce_module.html
https://cloud.google.com/appengine/docs/standard/python/oauth/
https://cloud.google.com/appengine/docs/standard/python/oauth/

LinchPin Documentation, Release 1.6.6rc1

bkr_server

Beaker instances are provisioned using this resource.

• Topology Example

The ansible modules for beaker are written and bundled as part of LinchPin.

• bkr_server.py

• bkr_info.py

Topology Schema

Within Linchpin, the bkr_server resource_definition has more options than what are shown in the examples above. For
each bkr_server role definition, the following options are available.

Parameter required type ansible value default
role true string N/A
whiteboard false string whiteboard Provisioned by LinchPin
job_group false string job_group
cancel_message false string cancel_message
max_attempts false string max_attempts
attempt_wait_time false integer attempt_wait_time
recipesets false string recipesets see table below

recipesets

Because recipesets is how beaker requests systems, it’s a large part of what the topology schema includes. There are
several ways to request systems. This table describes the available recipesets options.

46 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/bkr-new.yml
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/provision/library/bkr_server.py
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/provision/library/bkr_info.py

LinchPin Documentation, Release 1.6.6rc1

Parameter required type sub-field layout options
distro false string N/A
family false string N/A
tags false list list of strings
name false string N/A
arch false string N/A
variant false string N/A
bkr_data false string N/A
method false string N/A
count false string N/A
ids false list N/A
taskparam false list list of strings
keyvalue false list list of strings
hostrequires false list param required type

tag true string
op false string
value false int / string
type false string

dict force false string
dict rawxml false string

reserve_duration false int N/A
repos false list dict baseurl
install false list list of strings

Additional Dependencies

The beaker resource group requires several additional dependencies. The following must be installed.

• beaker-client>=23.3

It is also recommended to install the python bindings for kerberos.

• python-krbV

For a Fedora 26 machine, the dependencies could be installed using dnf.

$ sudo dnf install python-krbV
$ wget https://beaker-project.org/yum/beaker-server-Fedora.repo
$ sudo mv beaker-server-Fedora.repo /etc/yum.repos.d/
$ sudo dnf install beaker-client

Alternatively, with pip, possibly within a virtual environment.

$ pip install linchpin[beaker]

Credentials Management

Beaker provides several ways to authenticate. LinchPin supports these methods.

• Kerberos

• OAuth2

1.2. Documentation 47

LinchPin Documentation, Release 1.6.6rc1

Note: LinchPin doesn’t support the username/password authentication mechanism. It’s also not recommended by the
Beaker Project, except for initial setup.

Duffy

Duffy is a tool for managing pre-provisioned systems in CentOS’ CI environment. The Duffy provider manages a
single resource, duffy_node.

duffy_node

The duffy_node resource provides the ability to provision using the duffy api.

• Topology Example

The ansible module for duffy exists in its own repository.

Using Duffy

Duffy can only be run within the CentOS CI environment. To get access, follow this guide. Once access is granted,
the duffy ansible module can be used.

Additional Dependencies

Duffy doesn’t require any additional dependencies, but does need to be included in the Ansible library path to work
properly. See the ansible documentation for help addding a library path.

Credentials Management

Duffy uses a single file, generally found in the user’s home directory, to provide credentials. It contains a single line,
which has the API key which is passed to duffy via the API.

For LinchPin to provision, duffy.key must exist.

A duffy topology can have a credentials section for each resource_group, which requires a filename.

topology_name: topo
resource_groups:

- resource_group_name: duffy
resource_group_type: duffy
resource_definitions:

.. snip ..

credentials: duffy.key

By default, the location searched for the duffy.key is the user’s home directory, as stated above. However, the cre-
dentials path can be set using --creds-path option. Assuming the duffy.key file was placed in ~/.config/
duffy, using the topology described above, a provisioning task could occur.

48 Chapter 1. Why LinchPin?

https://wiki.centos.org/QaWiki/CI/Duffy
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/duffy-new.yml
https://github.com/CentOS-PaaS-SIG/duffy-ansible-module
https://wiki.centos.org/QaWiki/CI/GettingStarted
http://docs.ansible.com/ansible/latest/intro_configuration.html#library

LinchPin Documentation, Release 1.6.6rc1

$ linchpin -v --creds-path ~/.config/duffy up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/duffy"
$ linchpin -v up

oVirt

The ovirt provider manages a single resource, ovirt_vms.

ovirt_vms

oVirt Domains/VMs can be provisioned using this resource.

• Topology Example

• Ansible module

Additional Dependencies

There are no known additional dependencies for using the oVirt provider for LinchPin.

Credentials Management

An oVirt topology can have a credentials section for each resource_group, which requires the filename, and the
profile name.

Consider the following file, named ovirt_creds.yml.

clouds:
ge2:
auth:

ovirt_url: http://192.168.122.10/
ovirt_username: demo
ovirt_password: demo

An oVirt topology can have a credentials section for each resource_group, which requires the filename and profile
name.

topology_name: topo
resource_groups:

- resource_group_name: ovirt
resource_group_type: ovirt
resource_definitions:

.. snip ..

credentials:
filename: ovirt_creds.yml
profile: ge2

1.2. Documentation 49

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/ovirt-new.yml
http://docs.ansible.com/ansible/latest/ovirt_module.html

LinchPin Documentation, Release 1.6.6rc1

Provisioning

Provisioning with credentials uses the --creds-path option. Assuming the credentials file was placed in ~/.
config/ovirt, and the topology described above, a provision task could occur.

$ linchpin -v --creds-path ~/.config/ovirt up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/ovirt"
$ linchpin -v up

Openshift

The openshift provider manages two resources, openshift_inline, and openshift_external. However,
both of the resource types are managed by module k8s Ansible module. Usage of either one will result in redirection
to k8s module with different parameters.

Prior to linchpin 1.6.5, The Ansible module for openshift is written and bundled as part of LinchPin. * openshift.py

After 1.6.5 bundled ansible module is being replaced by upstream ansible kubernetes module. Refer: K8s module.
Linchpin supports all the attributes mentioned in k8s module.

openshift_inline

Openshift instances can be provisioned using this resource. Resources are detail inline. * Topology Example

Example PinFile:

openshift_external

Openshift instances can be provisioned using this resource. Resources are detail in an external file.

Example PinFile:

Topology Schema:

openshift_inline and opeshift_external resource definitions in linchpin follow the schema identical to ansible k8s
module. The following parameters are allowed in a linchpin topology:

Additional Dependencies

There are no known additional dependencies for using the openshift provider for LinchPin. Since openshift client
dependecy is included as part of linchpin’s core requirements.

50 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/provision/library/openshift.py
https://docs.ansible.com/ansible/2.6/modules/k8s_module.html
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/topologies/openshift-new.yml

LinchPin Documentation, Release 1.6.6rc1

Credentials Management

An openshift topology can have a credentials section for each resource_group, which requires the api_endpoint,
and the api_token values. Openshift honors –creds-path in linchpin. The credential file passed needs to be formatted
as follows. Further, it also honors all the evironment variables that are supported by ansible k8s module. Refer: K8s
module. Linchpin defaults to environment variables if the credentials section is ommited or the –creds-path does not
contain the openshift credential file.

default:

api_endpoint: https://192.168.42.115:8443
api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190

optional parameters
api_version: v1 # defaults to version 1
cert_file: /path/to/cert_file
context: contextname
key_file: /path/to/key_file
kube_config: /path/to/kube_config
ssl_ca_cert: /path/to/ssl_ca_cert
username: username # not needed when api_token is used
password: ******** # not needed when api_token is used
verify_ssl: no #defaults to no. Needs to be set to yes when ssl_ca_cert is used

test:
api_endpoint: https://192.168.42.115:8443
api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190

topology_name: topo
resource_groups:

- resource_group_name: openshift
resource_group_type: openshift
resource_definitions:

- name: openshift
role: openshift_inline
definition:

.. snip ..

credentials:
filename: name_of_credsfile.yaml # fetched from --creds-path is provided
profile: name_of_profile # defaults to 'default' profile in cred_file

Tid bits :

How to get to know API_ENDPOINT and API_TOKEN:

Once the openshift cluster is up and running try logging into openshift using the following command

After login run following command to get the API_ENDPOINT:

Run the following command to get API_TOKEN

1.2. Documentation 51

https://docs.ansible.com/ansible/2.6/modules/k8s_module.html
https://docs.ansible.com/ansible/2.6/modules/k8s_module.html

LinchPin Documentation, Release 1.6.6rc1

Make sure your openshift user has permissions to create resources:

Openshift by default imposes many restrictions on users when it comes to creation . One can always manage roles
to get appropriate roles. if its just a development environment please use following command to give admin user
privileges to user .. code-block:

oc adm policy add-cluster-role-to-user cluster-admin <username> --as=system:admin

Refer: Openshift role management.

1.2.6 Advanced Topics

Provisioning in LinchPin is a fairly simple process. However, LinchPin also provides some very flexible and powerful
features. These features can sometimes be complex, which means most users will likely not use them. Those features
are covered here.

Inventory Layouts

When generating an inventory, LinchPin provides some very flexible options. From the simple Layouts to much more
complex options, detailed here.

inventory_file

New in version 1.5.2

When an layout is provided in the PinFile, LinchPin automatically generates a static inventory for Ansible. The
inventory filename is dynamically generated based upon a few factors. However, the value can be overridden simply
by adding the inventory_file option.

inventory_layout:

inventory_file: /path/to/dummy.inventory
vars:
.. snip ..

Using LinchPin or Ansible variables

New in version 1.5.2

It’s likely that the inventory file is based upon specific Linchpin (or Ansible) variables. In this case, the values need to
be wrapped as raw values. This allows LinchPin to read the string in unparsed and pass it to the Ansible parser.

inventory_layout:
inventory_file: "{% raw -%}{{ workspace }}/inventories/dummy-new-{{ uhash }}.

→˓inventory{%- endraw %}"

Using Environment variables

Additionally, using environment variables requires the raw values.

52 Chapter 1. Why LinchPin?

https://docs.openshift.com/container-platform/3.3/admin_solutions/user_role_mgmt.html

LinchPin Documentation, Release 1.6.6rc1

host_groups:
all:
vars:

ansible_user: root
ansible_private_key_file: |

"{% raw -%}{{ lookup('env', 'TESTLP') | default('/tmp', true) }}/CSS/
→˓keystore/css-central{%- endraw %}"

The RunDB Explained

Attention: Much of the information below began in v1.2.0 and later. However, much of the data did not exist
until later on, generally in version 1.5.0 or later. Some cases, where noted, the data is only planned, and does not
yet exist.

The RunDB is the central database which stores transactions and target-based runs each time any LinchPin action is
performed. The RunDB stores detailed data, including inputs like topology, inventory layout, hooks; and outputs like
resource return data, ansible inventory filename and data, etc.

RunDB Storage

The RunDB is stored using a JSON format by default. TinyDB currently provides the backend. It is a NOSQL
database, which writes out transactional records to a single file. Other databases could provide a backend, as long as a
driver is written and included.

TinyDB is included in a class called TinyRunDB. TinyRunDB is an implementation of a parent class, called BaseDB,
which in turn is a subclass of the abstract RunDB class.

Records are the main way for items to be stored in the RunDB. There are two types of records stored in the RunDB,
target, and transaction.

Transaction Records

Each time any action (eg. linchpin up) occurs using linchpin, a transaction record is stored. The transaction
records are stored in the ‘linchpin’ table. The main constraint to this is that a target called linchpin cannot be used.

Transaction Records consist of a Transaction ID (tx_id), the action and a target information for each target acted upon
during the specified transaction. A single record could have multiple targets listed.

"136": {
"action": "up",
"targets": [

{
"dummy-new": {

"290": {
"rc": 0,
"uhash": "27e1"

}
},
"libvirt-new": {

"225": {
"rc": 0,

(continues on next page)

1.2. Documentation 53

http://tinydb.readthedocs.io/en/latest/
https://github.com/CentOS-PaaS-SIG/linchpin/blob/develop/linchpin/rundb/tinyrundb.py

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"uhash": "d88c"
}

}
}

]
},

In every case, the target data included is the name, run-id, return code (rc), and uhash. The linchpin journal
provides a transaction view to show this data in human readable format.

$ linchpin journal --view tx -t 136

ID: 136 Action: up

Target Run ID uHash Exit Code

dummy-new 290 27e1 0
libvirt-new 225 d88c 0

===

Target Records

Target Records are much more detailed. Generally, the target records correspond to a specific Run ID (run_id). These
can also be referenced via the linchpin journal command, using the target (default) view.

$ linchpin journal dummy-new --view target

Target: dummy-new
run_id action uhash rc

225 up f9e5 0
224 destroy 89ea 0
223 up 89ea 0

The target record data is where the detail lies. Each record contains several sections, followed by possibly several
sub-sections. A complete target record is very large. Let’s have a look at record 225 for the ‘dummy-new’ target.

"225": {
"action": "up",
"end": "03/27/2018 12:18:21 PM",
"inputs": [

{
"topology_data": {

"resource_groups": [
{

"resource_definitions": [
{

"count": 3,
"name": "web",
"role": "dummy_node"

},
{

"count": 1,

(continues on next page)

54 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"name": "test",
"role": "dummy_node"

}
],
"resource_group_name": "dummy",
"resource_group_type": "dummy"

}
],
"topology_name": "dummy_cluster"

}
},
{

"layout_data": {
"inventory_layout": {

"hosts": {
"example-node": {

"count": 3,
"host_groups": [

"example"
]

},
"test-node": {

"count": 1,
"host_groups": [

"test"
]

}
},
"inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash

→˓}}.inventory",
"vars": {

"hostname": "__IP__"
}

}
}

},
{

"hooks_data": {
"postup": [

{
"actions": [

"echo hello"
],
"name": "hello",
"type": "shell"

}
]

}
}

],
"outputs": [

{
"resources": [

{
"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,

(continues on next page)

1.2. Documentation 55

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"hosts": [
"web-f9e5-0.example.net",
"web-f9e5-1.example.net",
"web-f9e5-2.example.net"

]
},
{

"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,
"hosts": [

"test-f9e5-0.example.net"
]

}
]

}
],
"rc": 0,
"start": "03/27/2018 12:18:02 PM",
"uhash": "f9e5",
"cfgs": [

{
"evars": []

},
{

"magics": []
},
{

"user": []
}

]
},

As might be gleaned from looking at the JSON, there are a few main sections. Some of these sections, have subsections.
The main sections include:

* action

* start

* end

* uhash

* rc

* inputs

* outputs

* cfgs

Most of these sections are self-explanatory, or can be easily determined. However, there are three that may need further
explanation.

Inputs

The RunDB stored all inputs in the “inputs” section.

"inputs": [
{

"topology_data": {

(continues on next page)

56 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"resource_groups": [
{

"resource_definitions": [
{

"count": 3,
"name": "web",
"role": "dummy_node"

},
{

"count": 1,
"name": "test",
"role": "dummy_node"

}
],
"resource_group_name": "dummy",
"resource_group_type": "dummy"

}
],
"topology_name": "dummy_cluster"

}
},
{

"layout_data": {
"inventory_layout": {

"hosts": {
"example-node": {

"count": 3,
"host_groups": [

"example"
]

},
"test-node": {

"count": 1,
"host_groups": [

"test"
]

}
},
"inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash }}.

→˓inventory",
"vars": {

"hostname": "__IP__"
}

}
}

},
{

"hooks_data": {
"postup": [

{
"actions": [

"echo hello"
],
"name": "hello",
"type": "shell"

}
]

(continues on next page)

1.2. Documentation 57

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

}
}

],

Currently, the inputs section has three sub-sections, topology_data, layout_data, and hooks_data. These three sub-
sections hold relevant data. The use of this data is generally for record-keeping, and more recently to allow for reuse
of the data with linchpin up/destroy actions.

Additionally, some of this data is used to create the outputs, which are stored in the outputs section.

Outputs

Going forward, the outputs section will contain much more data than is displayed below. Items like ansible_inventory,
and user_data will also appear in the database. These will be provided in future development.

"outputs": [
{

"resources": [
{

"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,
"hosts": [

"web-f9e5-0.example.net",
"web-f9e5-1.example.net",
"web-f9e5-2.example.net"

]
},
{

"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,
"hosts": [

"test-f9e5-0.example.net"
]

}
]

}
],

The lone sub-section is resources. For the dummy-new target, the data provided is simplistic. However, for providers
like openstack or aws, the resources become quite large and extensive. Here is a snippet of an openstack resources
sub-section.

"resources": [
{

"changed": true,
"failed": false,
"ids": [

"fc96e134-4a68-4aaa-a053-7f53cae21369"
],
"openstack": [

{
"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",

(continues on next page)

58 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
"OS-SRV-USG:terminated_at": null,
"accessIPv4": "10.8.245.175",
"accessIPv6": "",
"addresses": {

"atomic-e2e-jenkins-test": [
{

"OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
"OS-EXT-IPS:type": "fixed",
"addr": "172.16.171.15",
"version": 4

},
{

"OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
"OS-EXT-IPS:type": "floating",
"addr": "10.8.245.175",
"version": 4

}
]

},
"adminPass": "<REDACTED>",
"az": "nova",
"cloud": "",
"config_drive": "",
"created": "2017-11-27T19:43:47Z",
"disk_config": "MANUAL",
"flavor": {

"id": "2",
"name": "m1.small"

},
"has_config_drive": false,
"hostId": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64",
"host_id": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64

→˓",
"id": "fc96e134-4a68-4aaa-a053-7f53cae21369",

"image": {
"id": "eae92800-4b49-4e81-b876-1cc61350bf73",
"name": "CentOS-7-x86_64-GenericCloud-1612"

},
"interface_ip": "10.8.245.175",
"key_name": "ci-factory",
"launched_at": "2017-11-27T19:43:54.000000",
"location": {

"cloud": "",
"project": {

"domain_id": null,
"domain_name": null,
"id": "6e65fbc3161648e78fde849c7abbd30f",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": "nova"

},
"metadata": {},

(continues on next page)

1.2. Documentation 59

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"name": "database-44ee-1",
"networks": {},
"os-extended-volumes:volumes_attached": [],
"power_state": 1,
"private_v4": "172.16.171.15",
"progress": 0,
"project_id": "6e65fbc3161648e78fde849c7abbd30f",
"properties": {

"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",
"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
"OS-SRV-USG:terminated_at": null,
"os-extended-volumes:volumes_attached": []

},
"public_v4": "10.8.245.175",
"public_v6": "",
"region": "",
"security_groups": [

{
"description": "Default security group",
"id": "1da85eb2-3c51-4729-afc4-240e187a30ce",
"location": {

"cloud": "",
"project": {

"domain_id": null,
"domain_name": null,
"id": "6e65fbc3161648e78fde849c7abbd30f",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
.. snip ..

Note: The data above continues for several more pages, and would take up too much space to document. A savvy
user might cat the rundb file and pipe it to the python ‘json.tool’ module.

Each provider returns a large structure like this as results of the provisioning (up) process. For the teardown, the data
can be large, but is generally more succinct.

Context Distiller

New in version 1.5.2

The purpose of the Context Distiller is to take outputs from provisioned resources and provide them to a user as a json
file.

The distiller currently supports the following roles:

* os_server

* aws_ec2

* bkr_server

* dummy_node (for testing)

For each role, the distiller collects specific fields from the resource data.

60 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

Note: Please be aware that this feature is planned to integrated with other tooling to make extracting resource data
more flexible in the future.

Enabling the Distiller

To enable the Context Distiller, the following must be set in the linchpin.conf.

[lp]
distill_data = True

disable generating the resources file
[evars]
generate_resources = False

Note: Other settings may already be in these sections. If that is the case, just add these settings to the proper section.

Hint: It may not be immediately obvious, as LinchPin uses the RunDB data to return resource data from a run. In
this way, the resource data can be stored somewhere and retrieved at any time by future tooling. Because of this, the
resources file is disabled. In this way, the resource data is stored solely in the RunDB for easy retrieval.

Fields to Retreive

Warning: Modifying the distilled fields can cause unexpected results. MODIFY THIS DATA AT YOUR OWN
RISK!

Within the linchpin.constants file, the [distiller] section exists. Described within this section is how each role gathers
the applicable data to distill.

[distiller]
bkr_server = id,url,system
dummy_node: hosts
aws_ec2 = instances.id,instances.public_ip,instances.private_ip,instances.public_dns_
→˓name,instances.private_dns_name,instances.tags:name
os_server = servers.id,servers.interface_ip,servers.name,servers.private_v4,servers.
→˓public_v4

If the distiller is enabled, the bkr_server role will distill the id, url, and system values for each instance provisioned
during the transaction.

Output

The distiller creates one file, placed in <workspace>/resources/linchpin.distilled. Each time an ‘up’
transaction is performed, the distilled data is overwritten.

If no output is recorded, it’s likely that the provisioning didn’t complete successfully, or an error occurred during data
collection. The data is still available in the RunDB.

1.2. Documentation 61

https://github.com/CentOS-PaaS-SIG/linchpin/tree/develop/docs/source/examples/workspace/linchpin.conf
https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/linchpin/linchpin.constants

LinchPin Documentation, Release 1.6.6rc1

This is the output for the aws_ec2 role, using the aws-ec2-new target, which provisioned two instances.

{
"aws-ec2-new": [

{
"id": "i-0d8616a3d08a67f38",
"name": "demo-day",
"private_dns_name": "ip-172-31-18-177.us-west-2.compute.internal",
"private_ip": "172.31.18.177",
"public_dns_name": "ec2-54-202-80-27.us-west-2.compute.amazonaws.com",
"public_ip": "54.202.80.27"

},
{

"id": "i-01112909e184530fc",
"name": "demo-night",
"private_dns_name": "ip-172-31-20-190.us-west-2.compute.internal",
"private_ip": "172.31.20.190",
"public_dns_name": "ec2-54-187-172-80.us-west-2.compute.amazonaws.com",
"public_ip": "54.187.172.80"

}
]

}

PinFile Configs

You can use the cfgs section of the PinFile to define variables for use in inventories. These variables map to values in
the json returned by the relevant provider, and are dot-separated. For example, the variable __IP__ in the cfgs below
would map to the address 55.234.16.11 in the following json:

{
'addresses': [

{
'public_v4': '55.234.16.11'

},
{

'public_v4': '219.16.122.93'
}

]
}

cfgs:
aws:
__IP__: addresses.0.public_v4

Information on the json returned by different providers can be found below:

AWS Sample Output

{
"kernel": null,
"root_device_type": "ebs",
"private_dns_name": "",
"public_ip": "",
"private_ip": "",

(continues on next page)

62 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"id": "i-01cc0455abe8465b8",
"ebs_optimized": false,
"state": "running",
"virtualization_type": "hvm",
"root_device_name": "/dev/sda1",
"ramdisk": null,
"block_device_mapping": {

"/dev/sdb": {
"status": "attached",
"delete_on_termination": true,
"volume_id": "vol-0f3311851115c8241"

},
"/dev/sda1": {
"status": "attached",
"delete_on_termination": true,
"volume_id": "vol-00f6f149c57ac152c"

}
},
"key_name": null,
"image_id": "ami-984189e2",
"tenancy": "default",
"groups": {
"sg-eae64983": "default",
"sg-8a1d78e3": "public"

},
"public_dns_name": "",
"state_code": 16,
"tags": {

"color": "blue",
"resource_group_name": "aws",
"shape": "oval",
"name": "demo-day"

},
"placement": "us-east-1c",
"ami_launch_index": "0",
"dns_name": "",
"region": "us-east-1",
"launch_time": "2018-10-01T17:19:23.000Z",
"instance_type": "m1.small",
"architecture": "x86_64",
"hypervisor": "xen"

}

Dummy Sample Output

{
"hypervisor": "xen"
"failed": false,
"changed": true,
"hosts": [

dummy-8c8b6b-0,
dummy-8c8b6b-1,
dummy-8c8b6b-2,

],

(continues on next page)

1.2. Documentation 63

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"resource_type": "dummy_res",
"dummy_file": "/tmp/dummy.hosts"

}

Libvirt Sample Output

{
"ip": "192.168.122.119",
"name": "centos71-872d6a_0"

}

openstack sample output

{
"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",
"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2018-09-19T14:53:12.000000",
"OS-SRV-USG:terminated_at": null,
"accessIPv4": "",
"accessIPv6": "",
"addresses": {

"e2e-openstack": [
{

"OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:a1:c0:6b",
"OS-EXT-IPS:type": "fixed",
"addr": "",
"version": 4

}
]

},
"adminPass": "",
"az": "nova",
"cloud": "defaults",
"config_drive": "",
"created": "2018-09-19T14:46:51Z",
"created_at": "2018-09-19T14:46:51Z",
"disk_config": "MANUAL",
"flavor": {

"id": "2",
"name": "m1.small"

},
"has_config_drive": false,
"hostId": "190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0",
"host_id": "190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0",
"id": "83e2d9d3-7823-45f3-8a58-52452acddaa8",
"image": {

"id": "11b72b11-59e8-4919-a918-265c1566bd45",
"name": "CentOS-7-x86_64-GenericCloud-1612"

},

(continues on next page)

64 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"interface_ip": "",
"key_name": "ci-factory",
"launched_at": "2018-09-19T14:53:12.000000",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": "nova"

},
"metadata": {},
"name": "596-master-d7b60a-1",
"networks": {},
"os-extended-volumes:volumes_attached": [],
"power_state": 1,
"private_v4": "",
"progress": 0,
"project_id": "f53391f4d50643f283af5d59fc450e09",
"properties": {

"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",
"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2018-09-19T14:53:12.000000",
"OS-SRV-USG:terminated_at": null,
"os-extended-volumes:volumes_attached": []

},
"public_v4": "",
"public_v6": "",
"region": "",
"security_groups": [

{
"description": "Default security group",
"id": "f48c6b12-497b-4301-97f5-0c8749815089",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"name": "default",
"project_id": "f53391f4d50643f283af5d59fc450e09",
"properties": {},
"security_group_rules": [

{
"direction": "ingress",
"ethertype": "IPv4",

(continues on next page)

1.2. Documentation 65

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"group": {},
"id": "1b315474-5730-483e-a9b7-712530c17b19",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": 22,
"port_range_min": 22,
"project_id": "",
"properties": {

"group": {}
},
"protocol": "tcp",
"remote_group_id": null,
"remote_ip_prefix": "0.0.0.0/0",
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
"tenant_id": ""

},
{

"direction": "ingress",
"ethertype": "IPv4",
"group": {

"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

},
"id": "2e45cfff-370d-460f-a88f-f3042b4a25d8",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": null,
"port_range_min": null,
"project_id": "",
"properties": {

"group": {
"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

}
},
"protocol": null,
"remote_group_id": null,
"remote_ip_prefix": null,
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",

(continues on next page)

66 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

"tenant_id": ""
},
{

"direction": "ingress",
"ethertype": "IPv4",
"group": {},
"id": "33078914-a857-45c4-8ed2-d4ba9d7b41be",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": null,
"port_range_min": null,
"project_id": "",
"properties": {

"group": {}
},
"protocol": "icmp",
"remote_group_id": null,
"remote_ip_prefix": "0.0.0.0/0",
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
"tenant_id": ""

},
{

"direction": "ingress",
"ethertype": "IPv4",
"group": {

"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

},
"id": "b801bf97-f470-476b-9d63-b692de45ec67",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": null,
"port_range_min": null,
"project_id": "",
"properties": {

"group": {
"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

}
(continues on next page)

1.2. Documentation 67

LinchPin Documentation, Release 1.6.6rc1

(continued from previous page)

},
"protocol": null,
"remote_group_id": null,
"remote_ip_prefix": null,
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
"tenant_id": ""

}
],
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

}
],
"status": "ACTIVE",
"task_state": null,
"tenant_id": "f53391f4d50643f283af5d59fc450e09",
"terminated_at": null,
"updated": "2018-09-19T14:53:12Z",
"user_id": "e32798f55da74cffa90d629e50939582",
"vm_state": "active",
"volumes": []

}

1.3 Developer Information

The following information may be useful for those wishing to extend LinchPin.

1.3.1 Python API Reference

This page contains the list of project’s modules

Linchpin API and Context Modules

The linchpin module provides the base API for managing LinchPin, Ansible, and other useful aspects for provisioning.

class linchpin.LinchpinAPI(ctx)

bind_to_hook_state(callback)
Function used by LinchpinHooksclass to add callbacks

Parameters callback – callback function

do_action(provision_data, action=’up’, run_id=None, tx_id=None)
This function takes provision_data, and executes the given action for each target within the provision_data
disctionary.

Parameters provision_data – PinFile data as a dictionary, with

target information

Parameters

• action – Action taken (up, destroy, etc). (Default: up)

• run_id – Provided run_id to duplicate/destroy (Default: None)

• tx_id – Provided tx_id to duplicate/destroy (Default: None)

68 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

do_validation(provision_data, old_schema=False)
This function takes provision_data, and attempts to validate the topologies for that data

Parameters provision_data – PinFile data as a dictionary, with

target information

generate_inventory(resource_data, layout, inv_format=’cfg’, topology_data={}, con-
fig_data={})

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

get_pf_data_from_rundb(targets, run_id=None, tx_id=None)
This function takes the action and provision_data, returns the pinfile data

Parameters

• targets – A list of targets for which to get the data

• targets – Tuple of target(s) for which to gather data.

• run_id – run_id associated with target (Default: None)

• tx_id – tx_id for which to gather data (Default: None)

get_run_data(tx_id, fields, targets=())
Returns the RunDB for data from a specified field given a tx_id. The fields consist of the major sections
in the RunDB (target view only). Those fields are action, start, end, inputs, outputs, uhash, and rc.

Parameters

• tx_id – tx_id to search

• fields – Tuple of fields to retrieve for each record requested.

• targets – Tuple of targets to search from within the tx_ids

hook_state
getter function for hook_state property of the API object

lp_journal(view=’target’, targets=[], fields=None, count=1, tx_ids=None)

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

1.3. Developer Information 69

LinchPin Documentation, Release 1.6.6rc1

• key – key to use

• value – value to set into section within config file

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

setup_rundb()
Configures the run database parameters, sets them into extra_vars

validate_layout(layout)
Validate the provided layout against the schema

Parameters layout – layout dictionary

validate_topology(topology)
Validate the provided topology against the schema

;param topology: topology dictionary

class linchpin.context.LinchpinContext
LinchpinContext object, which will be used to manage the cli, and load the configuration file.

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

Does not apply if section is not provided.

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

load_config(search_path=None)
Update self.cfgs from the linchpin configuration file (linchpin.conf).

NOTE: Must be implemented by a subclass

load_global_evars()
Instantiate the evars variable, then load the variables from the ‘evars’ section in linchpin.conf. This will
then be passed to invoke_linchpin, which passes them to the Ansible playbook as needed.

log(msg, **kwargs)
Logs a message to a logfile

Parameters

• msg – message to output to log

70 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

• level – keyword argument defining the log level

log_debug(msg)
Logs a DEBUG message

log_info(msg)
Logs an INFO message

log_state(msg)
Logs nothing, just calls pass

Attention: state messages need to be implemented in a subclass

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

• key – key to use

• value – value to set into section within config file

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

setup_logging()
Setup logging to the console only

Attention: Please implement this function in a subclass

linchpin.ansible_runner.ansible_runner(playbook_path, module_path, extra_vars, inven-
tory_src=’localhost’, verbosity=1, console=True)

Uses the Ansible API code to invoke the specified linchpin playbook :param playbook: Which ansible playbook
to run (default: ‘up’) :param console: Whether to display the ansible console (default: True)

linchpin.ansible_runner.ansible_runner_24x(playbook_path, extra_vars, options=None, in-
ventory_src=’localhost’, console=True)

linchpin.ansible_runner.ansible_runner_2x(playbook_path, extra_vars, options=None, in-
ventory_src=’localhost’, console=True)

linchpin.ansible_runner.suppress_stdout(*args, **kwds)
This context manager provides tooling to make Ansible’s Display class not output anything when used

class linchpin.callbacks.PlaybookCallback(display=None, options=None, ansi-
ble_version=2.3)

Playbook callback

v2_runner_on_failed(result, **kwargs)
Save failed result

v2_runner_on_ok(result)
Save ok result

1.3. Developer Information 71

LinchPin Documentation, Release 1.6.6rc1

LinchPin Command-Line API

The linchpin.cli module provides an API for writing a command-line interface, the LinchPin Command Line Shell
implementation being the reference implementation.

class linchpin.cli.LinchpinCli(ctx)

find_include(filename, ftype=’topology’)
Find the included file to be acted upon.

Parameters

• filename – name of file from to be loaded

• ftype – the file type to locate: topology, layout (default: topology)

lp_destroy(targets=(), run_id=None, tx_id=None)
This function takes a list of targets, and performs a destructive teardown, including undefining nodes,
according to the target(s).

See also:

lp_down - currently unimplemented

Parameters

• targets – A tuple of targets to destroy.

• run_id – An optional run_id to use

• tx_id – An optional tx_id to use

lp_down(pinfile, targets=(), run_id=None)
This function takes a list of targets, and performs a shutdown on nodes in the target’s topology. Only
providers which support shutdown from their API (Ansible) will support this option.

CURRENTLY UNIMPLEMENTED

See also:

lp_destroy

Parameters

• pinfile – Provided PinFile, with available targets,

• targets – A tuple of targets to provision.

lp_fetch(src, root=”, fetch_type=’workspace’, fetch_protocol=’FetchGit’, fetch_ref=None,
dest_ws=None, nocache=False)

Fetch a workspace from git, http(s), or a local directory, and generate a provided workspace

Parameters

• src – The URL or URI of the remote directory

• root – Used to specify the location of the workspace within the remote. If root is not set,
the root of the given remote will be used.

• fetch_type – Specifies which component(s) of a workspace the user wants to fetch.
Types include: topology, layout, resources, hooks, workspace. (default: workspace)

• fetch_protocol – The protocol to use to fetch the workspace. (default: git)

72 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 1.6.6rc1

• fetch_ref – Specify the git branch. Used only with git protocol (eg. master). If not
used, the default branch will be used.

• dest_ws – Workspaces destination, the workspace will be relative to this location.

If dest_ws is not provided and -r/–root is provided, the basename will be the name of the
workspace within the destination. If no root is provided, a random workspace name will
be generated. The destination can also be explicitly set by using -w (see linchpin –help).

• nocache – If true, don’t copy from the cache dir, unless it’s longer than the configured
fetch.cache_days (1 day) (default: False)

lp_init(providers=[’libvirt’])
Initializes a linchpin project. Creates the necessary directory structure, includes PinFile, topologies and
layouts for the given provider. (Default: Dummy. Other providers not yet implemented.)

Parameters providers – A list of providers for which templates

(and a target) will be provided into the workspace. NOT YET IMPLEMENTED

lp_setup(providers=’all’)
This function takes a list of providers, and setsup the dependencies :param providers:

A tuple of providers to install dependencies

lp_up(targets=(), run_id=None, tx_id=None, inv_f=’cfg’)
This function takes a list of targets, and provisions them according to their topology.

Parameters

• targets – A tuple of targets to provision

• run_id – An optional run_id if the task is idempotent

• tx_id – An optional tx_id if the task is idempotent

lp_validate(targets=(), old_schema=False)
This function takes a list of targets, and validates their topology.

Parameters targets – A tuple of targets to provision

:param old_schema Denotes whether schema should be validated with the old schema rather than the
new one!/usr/bin/env python

pf_data
getter for pinfile template data

pinfile
getter function for pinfile name

workspace
getter function for context workspace

class linchpin.cli.context.LinchpinCliContext
Context object, which will be used to manage the cli, and load the configuration file

load_config(lpconfig=None)
Update self.cfgs from the linchpin configuration file (linchpin.conf).

The following paths are used to find the config file. The search path defaults to the first-found order:

* /etc/linchpin.conf

* /linchpin/library/path/linchpin.conf

* <workspace>/linchpin.conf

1.3. Developer Information 73

LinchPin Documentation, Release 1.6.6rc1

An alternate search_path can be passed.

Parameters search_path – A list of paths to search a linchpin config

(default: None)

log(msg, **kwargs)
Logs a message to a logfile or the console

Parameters

• msg – message to log

• lvl – keyword argument defining the log level

• msg_type – keyword argument giving more flexibility.

Note: Only msg_type STATE is currently implemented.

log_debug(msg)
Logs a DEBUG message

log_info(msg)
Logs an INFO message

log_state(msg)
Logs a message to stdout

pinfile
getter function for pinfile name

setup_logging()
Setup logging to a file, console, or both. Modifying the linchpin.conf appropriately will provide function-
ality.

workspace
getter function for workspace

LinchPin Command Line Shell implementation

The linchpin.shell module contains calls to implement the Command Line Interface within linchpin. It uses the Click
command line interface composer. All calls here interface with the LinchPin Command-Line API API.

class linchpin.shell.click_default_group.DefaultGroup(*args, **kwargs)
Invokes a subcommand marked with default=True if any subcommand not chosen.

Parameters default_if_no_args – resolves to the default command if no arguments passed.

command(*args, **kwargs)
A shortcut decorator for declaring and attaching a command to the group. This takes the same argu-
ments as command() but immediately registers the created command with this instance by calling into
add_command().

format_commands(ctx, formatter)
Extra format methods for multi methods that adds all the commands after the options.

get_command(ctx, cmd_name)
Given a context and a command name, this returns a Command object if it exists or returns None.

list_commands(ctx)
Provide a list of available commands. Anything deprecated should not be listed

74 Chapter 1. Why LinchPin?

http://click.pocoo.org

LinchPin Documentation, Release 1.6.6rc1

parse_args(ctx, args)
Given a context and a list of arguments this creates the parser and parses the arguments, then modifies the
context as necessary. This is automatically invoked by make_context().

resolve_command(ctx, args)

set_default_command(command)
Sets a command function as the default command.

LinchPin Hooks API

The linchpin.hooks module manages the hooks functionality within LinchPin.

class linchpin.hooks.ActionBlockRouter(name, *args, **kwargs)
Proxy pattern implementation for fetching actionmanagers by name

class linchpin.hooks.LinchpinHooks(api)

prepare_ctx_params()
prepares few context parameters based on the current target_data that is being set. these parameters are
based topology name.

prepare_inv_params()

run_actions(action_blocks, tgt_data, is_global=False)
Runs actions inside each action block of each target

Parameters

• action_blocks – list of action_blocks each block constitues to a type of hook

• tgt_data – data specific to target, which can be dict of

topology , layout, outputs, inventory :param is_global: scope of the hook

example: action_block: - name: do_something

type: shell actions:

• echo ‘ this is ‘postup’ operation Hello hai how r u ?’

run_hooks(state, is_global=False)
Function to run hook all hooks from Pinfile based on the state :param state: hook state (currently, preup,
postup, predestroy, postdestroy) :param is_global: whether the hook is global (can be applied to multiple
targets)

run_inventory_gen(data)

rundb

LinchPin Extra Modules

These are modules not documented elsewhere in the LinchPin API, but may be useful to a developer.

class linchpin.utils.dataparser.DataParser

load_pinfile(pinfile)

parse_json_yaml(data, ordered=True)
parses yaml file into json object

1.3. Developer Information 75

LinchPin Documentation, Release 1.6.6rc1

process(file_w_path, data=None)
Processes the PinFile and any data (if a template) using Jinja2. Returns json of PinFile, topology, layout,
and hooks.

Parameters

• file_w_path – Full path to the provided file to process

• data – A JSON representation of data mapped to a Jinja2 template in file_w_path

render(template, context, ordered=True)
Performs the rendering of template and context data using Jinja2.

Parameters

• template – Full path to the Jinja2 template

• context – A dictionary of variables to be rendered againt the template

run_script(script)

write_json(provision_data, pf_outfile)

exception linchpin.exceptions.ActionError(*args, **kwargs)

exception linchpin.exceptions.ActionManagerError(*args, **kwargs)

exception linchpin.exceptions.HookError(*args, **kwargs)

exception linchpin.exceptions.LinchpinError(*args, **kwargs)

exception linchpin.exceptions.SchemaError(*args, **kwargs)

exception linchpin.exceptions.StateError(*args, **kwargs)

exception linchpin.exceptions.TopologyError(*args, **kwargs)

exception linchpin.exceptions.ValidationError(*args, **kwargs)

class linchpin.exceptions.ValidationErrorHandler(tree=None)

messages = {0: '{0}', 1: 'document is missing', 2: "field '{field}' is required", 3: "field '{field}' could not be recognized within the schema provided", 4: "field '{0}' is required", 5: 'depends on these values: {constraint}', 6: "{0} must not be present with '{field}'", 33: "'{0}' is not a document, must be a dict", 34: 'empty values not allowed', 35: 'null value not allowed', 36: "value for field '{field}' must be of type '{constraint}'", 37: 'must be of dict type', 38: 'length of list should be {constraint}, it is {0}', 39: 'min length is {constraint}', 40: 'max length is {constraint}', 65: "value does not match regex '{constraint}'", 66: 'min value is {constraint}', 67: 'max value is {constraint}', 68: "unallowed value '{value}' for field '{field}'. Allowed values are: {constraint}", 69: 'unallowed values {0}', 70: 'unallowed value {value}', 71: 'unallowed values {0}', 97: "field '{field}' cannot be coerced: {0}", 98: "field '{field}' cannot be renamed: {0}", 99: 'field is read-only', 100: "default value for '{field}' cannot be set: {0}", 129: "mapping doesn't validate subschema: {0}", 130: "one or more sequence-items don't validate: {0}", 131: "one or more keys of a mapping don't validate: {0}", 132: "one or more values in a mapping don't validate: {0}", 133: "one or more sequence-items don't validate: {0}", 145: 'one or more definitions validate', 146: 'none or more than one rule validate', 147: 'no definitions validate', 148: "one or more definitions don't validate"}

class linchpin.fetch.FetchHttp(ctx, fetch_type, src, dest, cache_dir, root=”, root_ws=”,
ref=None)

call_wget(fetch_dir=None)

fetch_files()

class linchpin.fetch.FetchGit(ctx, fetch_type, src, dest, cache_dir, root=”, root_ws=”,
ref=None)

call_clone(fetch_dir=None)

fetch_files()

See also:

User Mailing List Subscribe and participate. A great place for Q&A

LinchPin on Github Code Contributions and Latest Software

webchat.freenode.net #linchpin IRC chat channel

LinchPin on PyPi Latest Release of LinchPin

76 Chapter 1. Why LinchPin?

https://www.redhat.com/mailman/listinfo/linchpin
https://github.com/CentOS-PaaS-SIG/linchpin
http://webchat.freenode.net?channels=linchpin
https://pypi.org/project/linchpin/

LinchPin Documentation, Release 1.6.6rc1

1.4 FAQs

Below is a list of Frequently Asked Questions (FAQs), with answers. Feel free to submit yours in a Github issue.

1.5 Community

LinchPin has a small, but vibrant community. Come help us while you learn a skill.

See also:

User Mailing List Subscribe and participate. A great place for Q&A

LinchPin on Github Code Contributions and Latest Software

webchat.freenode.net #linchpin IRC chat channel

LinchPin on PyPi Latest Release of LinchPin

1.6 Glossary

The following is a list of terms used throughout the LinchPin documentation.

_async (boolean, default: False)

Used to enable asynchronous provisioning/teardown. Sets the Ansible async magic_var.

async_timeout (int, default: 1000)

How long the resouce collection (formerly outputs_writer) process should wait

_check_mode/check_mode (boolean, default: no)

This option does nothing at this time, though it may eventually be used for dry-run functionality based upon the
provider

default_schemas_path (file_path, default: <lp_path>/defaults/<schemas_folder>)

default path to schemas, absolute path. Can be overridden by passing schema / schema_file.

default_playbooks_path (file_path, default: <lp_path>/defaults/playbooks_folder>)

default path to playbooks location, only useful to the linchpin API and CLI

default_layouts_path (file_path, default: <lp_path>/defaults/<layouts_folder>)

default path to inventory layout files

default_topologies_path (file_path, default: <lp_path>/defaults/<topologies_folder>)

default path to topology files

default_resources_path (file_path, default: <lp_path>/defaults/<resources_folder>, formerly: outputs)

default landing location for resources output data

default_inventories_path (file_path, default: <lp_path>/defaults/<inventories_folder>)

default landing location for inventory outputs

evars

1.4. FAQs 77

https://github.com/CentOS-PaaS-SIG/linchpin
https://www.redhat.com/mailman/listinfo/linchpin
https://github.com/CentOS-PaaS-SIG/linchpin
http://webchat.freenode.net?channels=linchpin
https://pypi.org/project/linchpin/

LinchPin Documentation, Release 1.6.6rc1

extra_vars Variables that can be passed into Ansible playbooks from external sources. Used in linchpin via the
linchpin.conf [evars] section.

hook Certain scripts can be called when a particular hook has been referenced in the PinFile. The currently available
hooks are preup, postup, predestroy, and postdestroy.

inventory

inventory_file If layout is provided, this will be the location of the resulting ansible inventory

inventories_folder A configuration entry in linchpin.conf which stores the relative location where inventories are
stored.

linchpin_config

lpconfig if passed on the command line with -c/--config, should be an ini-style config file with linchpin default
configurations (see BUILT-INS below for more information)

layout

layout_file

inventory_layout Definition for providing an Ansible (currently) static inventory file, based upon the provided topol-
ogy

layouts_folder (file_path, default: layouts)

relative path to layouts

lp_path base path for linchpin playbooks and python api

output (boolean, default: True, previous: no_output)

Controls whether resources will be written to the resources_file

PinFile

pinfile A YAML file consisting of a topology and an optional layout, among other options. This file is used by the
linchpin command-line, or Python API to determine what resources are needed for the current action.

playbooks_folder (file_path, default: provision)

relative path to playbooks, only useful to the linchpin API and CLI

provider A set of platform actions grouped together, which is provided by an external Ansible module. openstack
would be a provider.

provision

up An action taken when resources are to be made available on a particular provider platform. Usually corresponds
with the linchpin up command.

resource_definitions In a topology, a resource_definition describes what the resources look like when provisioned.
This example shows two different dummy_node resources, the resource named web will get 3 nodes, while and
the resource named test will get 1 resource.

resource_definitions:
- name: "web"

type: "dummy_node"
count: 3

- name: "test"
type: "dummy_node"
count: 1

resource_group_type For each resource group, the type is defined by this value. It’s used by the LinchPin API to
determine which provider playbook to run.

78 Chapter 1. Why LinchPin?

https://raw.githubusercontent.com/CentOS-PaaS-SIG/linchpin/develop/docs/source/examples/workspace/linchpin.conf

LinchPin Documentation, Release 1.6.6rc1

resources

resources_file File with the resource outputs in a JSON formatted file. Useful for teardown (destroy,down) actions
depending on the provider.

run_id

run-id An integer identifier assigned to each task.

• The run_id can be passed to linchpin up for idempotent provisioning

• The run_id can be passed to linchpin destroy to destroy any previously provisioned resources.

rundb

RunDB A simple json database, used to store the uhash and other useful data, including the run_id and output data.

schema JSON description of the format for the topology.

target Specified in the PinFile, the target references a topology and optional layout to be acted upon from the
command-line utility, or Python API.

teardown

destroy An action taken when resources are to be made unavailable on a particular provider platform. Usually corre-
sponds with the linchpin destroy command.

topologies_folder (file_path, default: topologies)

relative path to topologies

topology

topology_file A set of rules, written in YAML, that define the way the provisioned systems should look after executing
linchpin.

Generally, the topology and topology_file values are interchangeable, except after the file has been processed.

topology_name Within a topology_file, the topology_name provides a way to identify the set of resources being acted
upon.

uhash

uHash Unique-ish hash associated with resources on a provider basis. Provides unique resource names and data if
desired. The uhash must be enabled in linchpin.conf if desired.

workspace If provided, the above variables will be adjusted and mapped according to this value. Each path will use
the following variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

If the WORKSPACE environment variable is set, it will be used here. If it is not, this variable can be set on the
command line with -w/--workspace, and defaults to the location of the PinFile bring provisioned.

Note: schema is not affected by this pathing

See also:

Source Code LinchPin Source Code

1.6. Glossary 79

https://github.com/CentOS-PaaS-SIG/linchpin

LinchPin Documentation, Release 1.6.6rc1

Note: Releases are formatted using semanting versioning. If the release shown above is a pre-release version, the
content listed may not be supported. Use latest for the most up-to-date documentation.

80 Chapter 1. Why LinchPin?

https://semver.org

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

See also:

User Mailing List Subscribe and participate. A great place for Q&A

LinchPin on Github Code Contributions and Latest Software

webchat.freenode.net #linchpin IRC chat channel

LinchPin on PyPi Latest Release of LinchPin

81

https://www.redhat.com/mailman/listinfo/linchpin
https://github.com/CentOS-PaaS-SIG/linchpin
http://webchat.freenode.net?channels=linchpin
https://pypi.org/project/linchpin/

LinchPin Documentation, Release 1.6.6rc1

82 Chapter 2. Indices and tables

Python Module Index

l
linchpin, 68
linchpin.ansible_runner, 71
linchpin.callbacks, 71
linchpin.cli, 72
linchpin.cli.context, 73
linchpin.context, 70
linchpin.exceptions, 76
linchpin.fetch, 76
linchpin.hooks, 75
linchpin.hooks.action_managers, 75
linchpin.shell, 74
linchpin.shell.click_default_group, 74
linchpin.utils.dataparser, 75

83

LinchPin Documentation, Release 1.6.6rc1

84 Python Module Index

Index

Symbols
_async, 77
_check_mode/check_mode, 77

A
ActionBlockRouter (class in linchpin.hooks), 75
ActionError, 76
ActionManagerError, 76
ansible_runner() (in module linchpin.ansible_runner), 71
ansible_runner_24x() (in module linch-

pin.ansible_runner), 71
ansible_runner_2x() (in module linchpin.ansible_runner),

71
async_timeout, 77

B
bind_to_hook_state() (linchpin.LinchpinAPI method), 68

C
call_clone() (linchpin.fetch.FetchGit method), 76
call_wget() (linchpin.fetch.FetchHttp method), 76
command() (linchpin.shell.click_default_group.DefaultGroup

method), 74

D
DataParser (class in linchpin.utils.dataparser), 75
default_inventories_path, 77
default_layouts_path, 77
default_playbooks_path, 77
default_resources_path, 77
default_schemas_path, 77
default_topologies_path, 77
DefaultGroup (class in linch-

pin.shell.click_default_group), 74
destroy, 79
do_action() (linchpin.LinchpinAPI method), 68
do_validation() (linchpin.LinchpinAPI method), 69

E
evars, 77

extra_vars, 78

F
fetch_files() (linchpin.fetch.FetchGit method), 76
fetch_files() (linchpin.fetch.FetchHttp method), 76
FetchGit (class in linchpin.fetch), 76
FetchHttp (class in linchpin.fetch), 76
find_include() (linchpin.cli.LinchpinCli method), 72
format_commands() (linch-

pin.shell.click_default_group.DefaultGroup
method), 74

G
generate_inventory() (linchpin.LinchpinAPI method), 69
get_cfg() (linchpin.context.LinchpinContext method), 70
get_cfg() (linchpin.LinchpinAPI method), 69
get_command() (linchpin.shell.click_default_group.DefaultGroup

method), 74
get_evar() (linchpin.context.LinchpinContext method),

70
get_evar() (linchpin.LinchpinAPI method), 69
get_pf_data_from_rundb() (linchpin.LinchpinAPI

method), 69
get_run_data() (linchpin.LinchpinAPI method), 69

H
hook, 78
hook_state (linchpin.LinchpinAPI attribute), 69
HookError, 76

I
inventories_folder, 78
inventory, 78
inventory_file, 78
inventory_layout, 78

L
layout, 78
layout_file, 78

85

LinchPin Documentation, Release 1.6.6rc1

layouts_folder, 78
linchpin (module), 68
linchpin.ansible_runner (module), 71
linchpin.callbacks (module), 71
linchpin.cli (module), 72
linchpin.cli.context (module), 73
linchpin.context (module), 70
linchpin.exceptions (module), 76
linchpin.fetch (module), 76
linchpin.hooks (module), 75
linchpin.hooks.action_managers (module), 75
linchpin.shell (module), 74
linchpin.shell.click_default_group (module), 74
linchpin.utils.dataparser (module), 75
linchpin_config, 78
LinchpinAPI (class in linchpin), 68
LinchpinCli (class in linchpin.cli), 72
LinchpinCliContext (class in linchpin.cli.context), 73
LinchpinContext (class in linchpin.context), 70
LinchpinError, 76
LinchpinHooks (class in linchpin.hooks), 75
list_commands() (linch-

pin.shell.click_default_group.DefaultGroup
method), 74

load_config() (linchpin.cli.context.LinchpinCliContext
method), 73

load_config() (linchpin.context.LinchpinContext
method), 70

load_global_evars() (linchpin.context.LinchpinContext
method), 70

load_pinfile() (linchpin.utils.dataparser.DataParser
method), 75

log() (linchpin.cli.context.LinchpinCliContext method),
74

log() (linchpin.context.LinchpinContext method), 70
log_debug() (linchpin.cli.context.LinchpinCliContext

method), 74
log_debug() (linchpin.context.LinchpinContext method),

71
log_info() (linchpin.cli.context.LinchpinCliContext

method), 74
log_info() (linchpin.context.LinchpinContext method),

71
log_state() (linchpin.cli.context.LinchpinCliContext

method), 74
log_state() (linchpin.context.LinchpinContext method),

71
lp_destroy() (linchpin.cli.LinchpinCli method), 72
lp_down() (linchpin.cli.LinchpinCli method), 72
lp_fetch() (linchpin.cli.LinchpinCli method), 72
lp_init() (linchpin.cli.LinchpinCli method), 73
lp_journal() (linchpin.LinchpinAPI method), 69
lp_path, 78
lp_setup() (linchpin.cli.LinchpinCli method), 73

lp_up() (linchpin.cli.LinchpinCli method), 73
lp_validate() (linchpin.cli.LinchpinCli method), 73
lpconfig, 78

M
messages (linchpin.exceptions.ValidationErrorHandler

attribute), 76

O
output, 78

P
parse_args() (linchpin.shell.click_default_group.DefaultGroup

method), 74
parse_json_yaml() (linchpin.utils.dataparser.DataParser

method), 75
pf_data (linchpin.cli.LinchpinCli attribute), 73
PinFile, 78
pinfile, 78
pinfile (linchpin.cli.context.LinchpinCliContext at-

tribute), 74
pinfile (linchpin.cli.LinchpinCli attribute), 73
PlaybookCallback (class in linchpin.callbacks), 71
playbooks_folder, 78
prepare_ctx_params() (linchpin.hooks.LinchpinHooks

method), 75
prepare_inv_params() (linchpin.hooks.LinchpinHooks

method), 75
process() (linchpin.utils.dataparser.DataParser method),

75
provider, 78
provision, 78

R
render() (linchpin.utils.dataparser.DataParser method), 76
resolve_command() (linch-

pin.shell.click_default_group.DefaultGroup
method), 75

resource_definitions, 78
resource_group_type, 78
resources, 79
resources_file, 79
run-id, 79
run_actions() (linchpin.hooks.LinchpinHooks method),

75
run_hooks() (linchpin.hooks.LinchpinHooks method), 75
run_id, 79
run_inventory_gen() (linchpin.hooks.LinchpinHooks

method), 75
run_script() (linchpin.utils.dataparser.DataParser

method), 76
RunDB, 79
rundb, 79

86 Index

LinchPin Documentation, Release 1.6.6rc1

rundb (linchpin.hooks.LinchpinHooks attribute), 75

S
schema, 79
SchemaError, 76
set_cfg() (linchpin.context.LinchpinContext method), 71
set_cfg() (linchpin.LinchpinAPI method), 69
set_default_command() (linch-

pin.shell.click_default_group.DefaultGroup
method), 75

set_evar() (linchpin.context.LinchpinContext method), 71
set_evar() (linchpin.LinchpinAPI method), 70
setup_logging() (linchpin.cli.context.LinchpinCliContext

method), 74
setup_logging() (linchpin.context.LinchpinContext

method), 71
setup_rundb() (linchpin.LinchpinAPI method), 70
StateError, 76
suppress_stdout() (in module linchpin.ansible_runner),

71

T
target, 79
teardown, 79
topologies_folder, 79
topology, 79
topology_file, 79
topology_name, 79
TopologyError, 76

U
uHash, 79
uhash, 79
up, 78

V
v2_runner_on_failed() (linch-

pin.callbacks.PlaybookCallback method),
71

v2_runner_on_ok() (linch-
pin.callbacks.PlaybookCallback method),
71

validate_layout() (linchpin.LinchpinAPI method), 70
validate_topology() (linchpin.LinchpinAPI method), 70
ValidationError, 76
ValidationErrorHandler (class in linchpin.exceptions), 76

W
workspace, 79
workspace (linchpin.cli.context.LinchpinCliContext at-

tribute), 74
workspace (linchpin.cli.LinchpinCli attribute), 73
write_json() (linchpin.utils.dataparser.DataParser

method), 76

Index 87

	Why LinchPin?
	Indices and tables
	Python Module Index

