
LinchPin Documentation
Release 2.0.0

Samvaran Kashyap Rallabandi

May 04, 2020

CONTENTS

1 Why LinchPin? 3

2 Indices and tables 133

Python Module Index 135

Index 137

i

ii

LinchPin Documentation, Release 2.0.0

Welcome to the LinchPin documentation!

LinchPin is a simple and flexible hybrid cloud orchestration tool. Its intended purpose is managing cloud resources
across multiple infrastructures. These resources can be provisioned, decommissioned, and configured all using declar-
ative data and a simple command-line interface.

Additionally, LinchPin provides a Python API for managing resources. The cloud management component is backed
by Ansible. The front-end API manages the interface between the command line (or other interfaces) and calls to the
Ansible API.

This documentation covers LinchPin version (2.0.0). For recent features, see the updated 2.0.0.

CONTENTS 1

https://ansible.com

LinchPin Documentation, Release 2.0.0

2 CONTENTS

CHAPTER

ONE

WHY LINCHPIN?

LinchPin provides a simple, declarative interface to a repeatable set of resources on cloud providers such as Amazon
Web Services, Openstack, and Google Cloud Platform to help improve productivity and performance for you and your
team. It’s built on top of other proven resources, including Ansible and Python. LinchPin is built with a focus on
Continuous Integration and Continuous Delivery tooling, in which its workflow excels.

LinchPin has some very useful features, including inventory generation, hooks, and more. Using these, specific cloud
resources can be spun up for testing applications. By creating a single PinFile with your targets in an environment,
you can simply run linchpin up and have your environment up and configured, ready for you to do your work with
very little effort.

1.1 Getting Started

The LinchPin getting started guide will walk you through your first LinchPin project, and show off the basics of the
major features LinchPin has to offer.

If you are curious about LinchPin and its features, please read the “Why LinchPin?” page.

This getting started guide will use LinchPin with the dummy provider. LinchPin can work with many other providers
and use cases. After following this tutorial, check out some other providers and use cases.

Before starting, please install the latest version of LinchPin. Test

1.1.1 Installation

LinchPin can be run either as a container or as a bare-metal application

Docker Installation

The LinchPin container is built using the latest Fedora image. The image exists in the docker hub as contrain-
fra/linchpin and is updated with each release. The image can also be build manually.

From within the config/Dockerfiles/linchpin directory:

$ sudo buildah bud -t linchpin .

Finally, to run the linchpin container:

$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /wordir up
$ sudo buildah run linchpin -v /path/to/workspace:/workdir -- linchpin -w /workdir -
→˓vv destroy

3

LinchPin Documentation, Release 2.0.0

Note: Setting the CREDS_PATH environment variable pointing the /workdir is recommended. AWS credentials
can also be passed as evironment variables when the container is run, named AWS_SECRET_ACCESS_KEY and
AWS_ACCESS_KEY_ID

Note: Beaker uses kinit, which is installed in the container but must be run within the container after it starts The
default /etc/krb5.conf for kerberos requires privilege escalation. The linchpin Dockerfile replaces it with a version that
eliminates this need

Bare Metal Installation

Currently, LinchPin can be run from any machine with Python 2.6+ (Python 3.x is currently experimental), and requires
Ansible 2.7.1 or newer.

Note: Some providers have additional dependencies. Additional software requirements can be found in the Examples
for all Providers documentation.

Refer to your specific operating system for directions on the best method to install Python, if it is not already installed.
Many modern operating systems will have Python already installed. This is typically the case in all versions of Linux
and OS X, but the version present might be older than the version needed for use with Ansible. You can check the
version by typing python --version.

If the system installed version of Python is older than 2.6, many systems will provide a method to install updated
versions of Python in parallel to the system version (eg. virtualenv).

Minimal Software Requirements

As LinchPin is heavily dependent on Ansible 2.9.0 or newer, this is a core requirement. Beyond installing Ansible,
there are several packages that need to be installed:

* libffi-devel

* libyaml-devel

* python3-libselinux

* make

* gcc

* redhat-rpm-config

* libxml2-python

* libxslt-python

For CentOS or RHEL the following packages should be installed:

$ sudo yum install python3-pip python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel libselinux-python make \
gcc redhat-rpm-config git

Attention: CentOS 6 (and likely RHEL 6) require special care during installation. See centos6_install for more
detail.

For Fedora 30+ the following packages should be installed:

4 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

$ sudo dnf install python3-virtualenv libffi-devel \
openssl-devel libyaml-devel gmp-devel python3-libselinux make \
gcc redhat-rpm-config libxml2-python libxslt-python

Installing LinchPin

Note: Currently, linchpin is not packaged for any major Operating System. If you’d like to contribute your time to
create a package, please contact the linchpin mailing list.

Create a virtualenv to install the package using the following sequence of commands (requires virtualenvwrapper)

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin
..snip..

Note: mkvirtualenv is optional dependency you can install from here. An alternative, virtualenv, also exists. Please
refer to the virtualenv documentation for more details.

To deactivate the virtualenv

(linchpin) $ deactivate
$

Then reactivate the virtualenv

$ workon linchpin
(linchpin) $

If testing or docs is desired, additional steps are required

(linchpin) $ pip3 install linchpin[docs]
(linchpin) $ pip3 install linchpin[tests]

Virtual Environments and SELinux

When using a virtualenv with SELinux enabled, LinchPin may fail due to an error related to the python3-libselinux
libraries. This is because the python3-libselinux binary needs to be enabled in the Virtual Environment. Because this
library affects the filesystem, it isn’t provided as a standard python module via pip. The RPM must be installed, then
a symlink must occur.

(linchpin) $ sudo dnf install python3-libselinux
.. snip ..
(linchpin) $ echo ${VIRTUAL_ENV}
/path/to/virtualenvs/linchpin
(linchpin) $ export VENV_LIB_PATH=lib/python3.x/site-packages
(linchpin) $ export LIBSELINUX_PATH=/usr/lib64/python3.x/site-packages # make sure to
→˓verify this location
(linchpin) $ ln -s ${LIBSELINUX_PATH}/selinux ${VIRTUAL_ENV}/${VENV_LIB_PATH}
(linchpin) $ ln -s ${LIBSELINUX_PATH}/_selinux.so ${VIRTUAL_ENV}/${VENV_LIB_PATH}

1.1. Getting Started 5

mailto:linchpin@redhat.com
http://virtualenvwrapper.readthedocs.io/en/latest/install.html
https://virtualenv.pypa.io/en/stable/

LinchPin Documentation, Release 2.0.0

Note: A script is provided to do this work at :code1.5:`scripts/install_selinux_venv.sh`

Installing on Fedora 30+

Install RPM pre-reqs

$ sudo dnf -y install python3-virtualenv libffi-devel openssl-devel libyaml-devel
→˓python3-libselinux make gcc redhat-rpm-config libxml2-python

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Note: The default workspace is $PWD, but can be set using the $WORKSPACE variable.

Installing on RHEL 7.4

Tested on RHEL 7.4 Server VM which was kickstarted and pre-installed with the following YUM package-groups and
RPMs:

* @core

* @base

* vim-enhanced

* bash-completion

* scl-utils

* wget

For RHEL 7, it is assumed that you have access to normal RHEL7 YUM repos via RHSM or by pointing at your own
http YUM repos, specifically the following repos or their equivalents:

* rhel-7-server-rpms

* rhel-7-server-optional-rpms

Install pre-req RPMs via YUM:

$ sudo yum install -y libffi-devel openssl-devel libyaml-devel gmp-devel python3-
→˓libselinux make gcc redhat-rpm-config libxml2-devel libxslt-devel libxslt-python
→˓libxslt-python

6 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Create a working-directory

$ mkdir mywork
$ cd mywork

Create linchpin directory, make a virtual environment, activate the virtual environment

$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install linchpin

Inside the virtualenv, upgrade pip and setuptools because the EPEL versions are too old.

(linchpin) $ pip3 install -U setuptools

Install linchpin

(linchpin) $ pip3 install linchpin

Make a workspace, and initialize it to prove that linchpin itself works

(linchpin) $ mkdir workspace
(linchpin) $ cd workspace
(linchpin) $ linchpin init
PinFile and file structure created at /home/user/workspace

Source Installation

As an alternative, LinchPin can be installed via github. This may be done in order to fix a bug, or contribute to the
project.

$ git clone git://github.com/CentOS-PaaS-SIG/linchpin
..snip..
$ cd linchpin
$ mkvirtualenv linchpin
..snip..
(linchpin) $ pip3 install file://$PWD/linchpin

linchpin setup : Automatic Dependency installation:

From version 1.6.5 linchpin includes linchpin setup commandline option to automate installations of linchpin depen-
dencies. linchpin setup uses built in ansible-playbooks to carryout the installations.

Install all the dependencies:

$ linchpin setup

To install only a subset of dependencies, pass as arguments list:

$ linchpin setup beaker docs

It also supports ask-sudo-pass parameter when installing dnf related dependencies:

$ linchpin setup libvirt --ask-sudo-pass

1.1. Getting Started 7

LinchPin Documentation, Release 2.0.0

1.1.2 LinchPin Initialization

$ linchpin init simple
Created destination workspace: /tmp/simple
$ cd /tmp/simple
$ linchpin up

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 1
Action: up

Target Run ID uHash Exit Code

simple 1 7735aa 0

After running the commands above, LinchPin should be able to provision for you. We’ll use linchpin init and linchpin
fetch throughout this tutorial to get you familiar with its inner workings.

It’s a minimal setup, using the dummy provider. We’ll get more into those in the upcoming parts of this tutorial.

Now that LinchPin is working, the simple workspace is in place, let’s learn more about Workspaces.

Note: If you were unable to get LinchPin successfully installed and/or working, please see the troubleshooting
documentation.

1.1.3 Workspaces

What is generated is commonly referred to as the workspace. The workspace can live anywhere on the filesystem.
The default is the current directory. The workspace can also be passed into the linchpin command line with the
--workspace (--w) option, or it can be set with the $WORKSPACE environmental variable.

In our simple example, the workspaces is /tmp/simple.

A workspace requires only one file, the PinFile. This file is the cornerstone to LinchPin provisioning. It’s a YAML
file, written with declarative syntax. This means the PinFile is written to explain how things should be provisioned
after running linchpin up.

Looking at the simple workspace, you’ll see that it has a few other items.

$ pwd
/tmp/simple
$ ls
inventories PinFile PinFile.json README.rst resources

Ignoring everything but the PinFile for now, it’s clear that other files and directories will exist in a workspace. Let’s
have a closer look at the components of a PinFile.

8 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

1.1.4 PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a
resource for provisioning. An example Pinfile is shown.

The PinFile in the simple workspace is shown below.

1 ---
2 simple:
3 topology:
4 topology_name: simple
5 resource_groups:
6 - resource_group_name: simple
7 resource_group_type: dummy
8 resource_definitions:
9 - name: web
10 role: dummy_node
11 count: 2

The PinFile collects the given topology and layout into one place. It’s grouped together in a target.

Note: Each of the lines of this PinFile are numbered to help identify lines discussed throughout this section. Each
will be denoted with a superscript1 next to its description.

Target

In this PinFile, the target2 is the first line simple, just like the name of the workspace. The target is what LinchPin
performs actions upon. For instance, typing linchpin up causes the PinFile to be read, and all targets evaluated.
The simple target would be found, and then the resources listed would be provisioned.

A target will have subcomponents, which tell linchpin what it should do and how. Currently, those are topology,
layout, and hooks. For now, we will just cover the topology and its components.

Topology

A topology3 consists of several items. First and foremost is the topology_name4, followed by one or more
resource_groups5. In this PinFile, there is only one resource group.

Resource Group

A resource group contains several items, minimally, it will have a resource_group_name6, and a resource_group_type7.
The main component of a resource group, it its resource_definitions8 section.

1.1. Getting Started 9

LinchPin Documentation, Release 2.0.0

Resource Definitions

Within a resource group, multiple resource definitions can exist. In many cases, there are desires for two different
resources to be provisioned within a resource group. In this example, there is only one. Each provider has its own
constraints for what is required. There are some common fields, however. In the example above, there is name9, role10,
and count11.

Note: The role relates to the ansible role used to perform provisioning. In this case, that’s the dummy_node role. But
many providers have multiple roles.

Definitions help, but lets see it in action.

Note: More detail about the PinFile can be found in the PinFiles document.

1.1.5 Up

It’s time to provision your first LinchPin resources.

1 [/tmp/simple]$ linchpin up
2 [WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

3 [WARNING]: No inventory was parsed, only implicit localhost is available

4 Action 'up' on Target 'simple' is complete

5 ID: 10
6 Action: up

7 Target Run ID uHash Exit Code

8 simple 2 3a4038 0

In just a few seconds, the command will finish. Because the simple target provides only the dummy_node resource, no
actual instances are provisioned. However, a representation can be found at /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-3a4038-0.example.net
web-3a4038-1.example.net

More importantly, there are several other things to note. First off, The linchpin command has two basic actions,
up and destroy. Each should be pretty self-explanatory.

10 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Summary

Upon completion of every action, there is a summary that is provided. This summary provides details which can be
used to repeat the process, or for further reporting with linchpin journal. Let’s cover the process in detail.

uHash

The Unique-ish Hash, or uHash8 provides a way for each instance to be unique within a set of resources. The uHash
is used throughout LinchPin with reporting, idempotency, inventories, etc. The uHash is configurable, but defaults to
a sha256 hash of some unique data, trimmed to 6 characters.

Run ID

The Run ID8 can be used for idempotency. The Run ID is used for a specific target. Passing -r <run-id> to
linchpin up or linchpin destroy along with the target will provide an idempotent up or destroy action.

$ linchpin up --run-id 2 simple

.. snip ..

Action 'up' on Target 'simple' is complete

ID: 11
Action: up

Target Run ID uHash Exit Code

simple 3 3a4038 0

The thing to notice here is that the uHash is the same here as in the original up action above. This provides idempotency
when provisioning.

ID

Similar to the Run ID explained above, the Transaction ID, or ID5, is provided for idempotency. If desired, the entire
transaction can be repeated using this value. Unlike the Run ID, however, the Transaction ID can be used to repeat the
entire transaction (multiple targets). As with Run ID, passing -t <tx-id> will provide idempotent an idempotent
up or destroy action.

$ linchpin up --tx-id 10

.. snip ..

ID: 12
Action: up

Target Run ID uHash Exit Code

simple 4 3a4038 0

1.1. Getting Started 11

LinchPin Documentation, Release 2.0.0

Note: All targets are executed when using -t/--tx-id. This differs from -r/--run-id where only one target
can be supplied per Run ID. This is useful when multiple targets are executed from the PinFile.

Exit Code

A common desire is to check the exit code7. This is provided as an indicator of the action’s success or failure.
Commonly, post actions are performed upon resources (eg. configure the system, adding logins, setting up security,
etc.)

1.1.6 Destroy

To destroy the previously provisioned resources, use linchpin destroy.

$ linchpin destroy
[WARNING]: Unable to parse /tmp/simple/localhost as an inventory source

[WARNING]: No inventory was parsed, only implicit localhost is available

Action 'destroy' on Target 'simple' is complete

ID: 13
Action: destroy

Target Run ID uHash Exit Code

simple 5 3a4038 0

As with linchpin up, destroy provides a summary of the action taken. In this case, however, the resources have
been terminated and cleaned up. With the dummy_node role, the resources are remove from the file.

$ cat /tmp/dummy.hosts
$ wc -l /tmp/dummy.hosts
0 /tmp/dummy.hosts

This concludes the introduction of the LinchPin getting started tutorial. For more information, see Examples for all
Providers.

1.1.7 Linchpin Hooks

Description:

Every resource provisioned by linchpin goes through multiple states. Each state has its own context. Depending upon
the state Linchpin provides a feature to trigger single or multiple events. In Linchpin terminology, each event can
initiate execution of a script/scripts or Ansible playbooks called hooks. Hooks are used to configure or interact with
resources provisioned or about to be provisioned. The trigger to the hooks is determined by the state in which it is
defined.

Different states linchpin provisioning undertakes are as follows:

• preup: State before provisioning the topology resources

• postup: State after provisioning the topology resources, and generating the optional inventory

12 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

• predestroy: State before teardown of the topology resources

• postdestroy: State after teardown of the topology resources

Depending upon the state section in which it is defined the hooks are triggered.

In linchpin, there are a set of python interfaces called ActionManagers which are responsible for the execution of a
hook. Based on the runtime they use to execute hook there are multiple types of Action managers exists. Here’s a list
of built-in Action Managers:

• shell: Allows either inline shell commands or an executable shell script

• python: Executes a Python script

• ansible: Executes an Ansible playbook, allowing passing of a vars_file and extra_vars represented as a Python
dict

• nodejs: Executes a Node.js script

• ruby: Executes a Ruby script

In addition to the above action managers, User can define their custom action manager. Refer Action managers
documentation for more details.

A hook is bound to a specific target and must be re-stated for each target used.

Based on how they are packaged linchpin hooks are classified into two types:

• User defined hooks: These hooks are written following specific syntax and folder structure within the workspace.
These are triggered based upon the section in which it is declared.

User-defined hooks are to be declared within a linchpin workspace folder named “hooks” by default. However,
this path can be configured by variable hooks_folder in [evars] section of linchpin.conf.

[evars]
...
hooks_folder = /path/to/hooks_folder

• Built-in hooks (in development): These hooks are pre-packaged with linchpin and they do not need any file
structure to be declared in workspaces to work. They can be directly referenced within the Pinfile.

User defined hook example:

Let us consider a user-defined hook for example.

Each hook follows a strict folder structure. If not followed the hooks execution will result in failure. The following
is an example workspace which has a user-defined ansible hook named example_hook. The following would be the
directory tree structure of the workspace.

.
credentials
hooks

ansible
example_hook

test_hook1.yaml
test_hook2.yaml

example_hook2
test_ex.yaml

inventories
layouts

dummy-layout.yml

(continues on next page)

1.1. Getting Started 13

LinchPin Documentation, Release 2.0.0

(continued from previous page)

linchpin.conf
linchpin.log
PinFile
resources
topologies

dummy-topology.yml

Every hook with respect to their type is declared in their respective folder ie., ansible hooks go inside ansible folder,
python hooks are declared in python folder etc., The current example illustrates the folder structure of ansible based
hooks. For more examples folder structures of other hooks refer Hooks examples. Further, the name of the folder
should be the name of the hook that will be referred to within a PinFile. Since Ansible relies on the playbooks. All the
playbooks are to be defined within the folder.

The following is how a user-defined hook looks like when referenced in a Pinfile dummy provider.

dummy_target:
topology:
topology_name: "dummy"
resource_groups:
- resource_group_name: "dummy"

resource_group_type: "dummy"
resource_definitions:
- role: "dummy_node"

name: "web"
count: 1

layout:
inventory_layout:

vars:
hostname: __IP__

hosts:
example-node:
count: 1
host_groups:
- example

hooks:
postup:
- name: example_hook # name of the hook
type: ansible # type of the hook ie., the type of action manager being

→˓used.
context: True # whether to pass the linchpin context variables or not.
actions:

- playbook: test_hook1.yaml # file name of the playbook to be run
- playbook: test_hook2.yaml

- name: example_hook2 # name of the hook
type: ansible # type of the hook ie., the type of action manager being

→˓used.
context: True # whether to pass the linchpin context variables or not.
actions:

- playbook: test_ex.yaml # file name of the playbook to be run

As mentioned previously, depending upon the state where the user would like to execute hooks can be triggered at
preup, postup, predestroy, postdestroy states. Within Pinfile these states are defined as separate sections. Every hook
declared within a section is executed in a top-down approach. Thus, according to the above example, example_hook
would be executed first after that execution is successful, example hook2 would be executed.

14 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Parameters of user-defined hooks:

• name: Name of the hook that is defined. Further, it should match the name of the folder inside the hooks_folder
configured

• type: Type of the action manager that is to be used can be any one of ansible, shell, python, ruby, and nodejs.

• Context: while declaring hooks provide an option called as context. When the context variable is set to True
some of the linchpin context variables are passed as runtime parameters to the playbooks/scripts executed. This
is feature is very helpful when end-user would like to run addition configuration playbooks on provisioned
instances.

• actions: Actions are the list of commands, scripts or playbooks which will be run. There can be multiple actions
with the same hook file referenced. If it is an ansible type hook, The elements in action should have a playbook,
extra_vars(Optional) parameters instead of directly referencing the file path. For more examples refer Linchpin
Hooks examples section.

Action manager specific parameters:

The following are examples for different types of hooks using multiple action_managers

• Ansible:

- name: example_hook2 # name of the hook
type: ansible # type of the hook ie., the type of action manager being

→˓used.
context: True # whether to pass the linchpin context variables or not.

path: /path/to/scripts # optional , by default path would be configured hooks_
→˓folder

actions:
- playbook: test_ex.yaml # file name of the playbook to be run
extra_vars:
testvar: testval # extravars are optional

• Python:

- name: example_hook2 # name of the hook
type: python # type of the hook ie., the type of action manager being used.
context: True # whether to pass the linchpin context variables or not.
path: /path/to/scripts # optional , by default path would be configured hooks_

→˓folder
actions:

- script.py #file name of the playbook to be run

• shell:

- name: example_hook3 # name of the hook
type: shell # type of the hook ie., the type of action manager being used.
context: True # whether to pass the linchpin context variables or not.
path: /path/to/scripts # optional , by default path would be configured hooks_

→˓folder
actions:
make sure the script file has execute permissions and shebang header included.

- script.sh #file name of the playbook to be run

• Ruby:

1.1. Getting Started 15

LinchPin Documentation, Release 2.0.0

- name: example_ruby # name of the hook
type: ruby # type of the hook ie., the type of action manager being used.
context: True # whether to pass the linchpin context variables or not.
path: /path/to/scripts # optional , by default path would be configured hooks_

→˓folder
actions:

- script.rb #file name of the playbook to be run

• Nodejs:

- name: example_nodejs # name of the hook
type: nodejs # type of the hook ie., the type of action manager being used.
context: True # whether to pass the linchpin context variables or not.
path: /path/to/scripts # optional , by default path would be configured hooks_

→˓folder
actions:

- script.js #file name of the playbook to be run

Note: For both ruby and nodejs the runtime interpreters should be pre-installed in the host machine.

• linchpin global hooks or builtins:

Linchpin also provides a prepackaged set of built-in hooks which can be referenced within Pinfile without creating a
hooks folder structure. These built-ins are ansible based hooks each having different parameters. Currently, There are
three builtin linchpin hooks available to end user. They are:

• ping: Simple ICMP ping to check the host provisioned in inventory is up or not

• check_ssh: linchpin tries to check the ssh server is up and running by logging into the machines provisioned
using a ssh key

• port_up: Checks whether the list of network ports are up or down.

All the builtin hooks are context-aware, Thus, every built-in hook is run against the inventory file generated during the
linchpin provisioning process.

Builtin hooks Example:

os-server-target:

topology:
topology_name: os-server-inst
resource_groups:

- resource_group_name: os-server-addl-vols
resource_group_type: openstack
resource_definitions:
- name: "database"
role: os_server
flavor: m1.small
image: CentOS-7-x86_64-GenericCloud-1612
count: 1
keypair: test_keypairsk2
fip_pool: 10.8.240.0
networks:

- e2e-openstack
credentials:
filename: clouds.yaml
profile: ci-rhos

layout:

(continues on next page)

16 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

inventory_layout:
vars:

hostname: __IP__
hosts:

addl-vols-node:
count: 1
host_groups:
- hello

hooks:
postup:
check_ssh, ping and port_up are builtin hooks
note builtin hooks follow different structure when compared to localhooks
- name: check_ssh

extra_vars:
since checking ssh depends on logging into machine pem file, ssh_user are

→˓must
ansible_ssh_private_key_file: test_keypairsk2.key
ansible_ssh_user: centos
ansible_ssh_common_args: "'-o StrictHostKeyChecking=no'"
ansible_python_interpreter: "/usr/bin/python"

- name: ping
- name: port_up

ports:
- 22
- 8080

Hook Communication:

Hooks can read data from other hooks run in the same target. Hook data is not shared between a provisioning and
corresponding teardown task, but is shared between pre- and post- provisioning as well as between action managers.

Experimental With the exception of the Ansible action manager, hook data is passed via the command line. Each
hook will receive two arguments on the command line. The first is a json array containing data from previous hook
runs. If the hooks are associated with a teardown, this will include hook data for both the hooks in the current run and
the hooks in the corresponding provisioning step. Each item in the array is an object with three fields: return_code.
data, and state (e.g. preup). The second argument is a path to a temporary file. In order for a hook to share data, it
should write any data it wants to share as json to this file. If the data in the file is not valid json, it will be ignored.

The ansible action manager handles data somewhat differently. The results array is passed as a variable called
hook_results to Ansible’s extra vars. Data from Ansible will be sent back to LinchPin using the PlaybookCallback
class.

Note: For more examples please refer hooks examples section.

Linchpin Hooks CLI (Options)

By default, hooks run as a part of the provisioning process. Hooks are executed in the following order: 1. preup 2.
postup 3. predestroy 4. postdestroy

Since each state can have multiple hooks defined hooks linchpin provisioning process can be affected by success
and failure of hook. By default, whenever there is any failure in execution of hook the provisioning process aborts.
However, this behaviour can be defined changed by two command line options –ignore-failed-hooks and –no-hooks

–ignore-failed-hooks on enabling this option the failure of hooks does not affect the provisioning process. If provi-
sioning is successful linchpin exits with 0

1.1. Getting Started 17

LinchPin Documentation, Release 2.0.0

–no-hooks Allows user to skip the execution of hooks

Usage:

linchpin -vvvv --creds-path ./credentials/ up --no-hooks

linchpin -vvvv --creds-path ./credentials/ destroy --no-hooks

linchpin -vvvv --creds-path ./credentials/ up --ignore-failed-hooks

linchpin -vvvv --creds-path ./credentials/ destroy --ignore-failed-hooks

Further, the above mentioned options can be configured permanently in hookflags section of linchpin.conf

[hookflags]
no_hooks = False
ignore_failed_hooks = False

Linchpin Hooks: Examples

Following document has most common examples of linchpin hooks

Example1: Running ansible based hooks on Openstack based instances

• Refer: Workspace <https://github.com/samvarankashyap/linchpin_hooks_openstack_ws>

• Pinfile:

os-server-addl-vols:

topology:
topology_name: os-server-inst
resource_groups:

- resource_group_name: os-server-addl-vols
resource_group_type: openstack
resource_definitions:
- name: "database"
role: os_server
flavor: m1.small
image: CentOS-7-x86_64-GenericCloud-1612
count: 1
keypair: testkeypair_sk
fip_pool: 10.8.240.0
networks:
- e2e-openstack

credentials:
filename: clouds.yaml
profile: ci-rhos

layout:
inventory_layout:

vars:
hostname: __IP__

hosts:
addl-vols-node:
count: 1
host_groups:
- hello

hooks:
(continues on next page)

18 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

postup:
actions:
- name: osoos
type: ansible
context: True
actions:

- playbook: install_packages.yaml
extra_vars:

ansible_ssh_private_key_file: "testkeypair_sk.key"
ansible_ssh_user: centos

- playbook: git_clone.yaml
extra_vars:
ansible_ssh_private_key_file: "testkeypair_sk.key"
ansible_ssh_user: centos

Example: Running Global hook ping, check_ssh, port_up on Openstack based resources

os-server-addl-vols:

topology:
topology_name: os-server-inst
resource_groups:
- resource_group_name: os-server-addl-vols

resource_group_type: openstack
resource_definitions:

- name: "database"
role: os_server
flavor: m1.small
image: CentOS-7-x86_64-GenericCloud-1612
count: 1
keypair: test_keypairsk2
fip_pool: 10.8.240.0
networks:

- e2e-openstack
credentials:

filename: clouds.yaml
profile: ci-rhos

layout:
inventory_layout:

vars:
hostname: __IP__

hosts:
addl-vols-node:
count: 1
host_groups:
- hello

hooks:
postup:

check_ssh, ping and port_up are builtin hooks
note builtin hooks follow different structure when compared to localhooks
- name: check_ssh

extra_vars:
since checking ssh depends on logging into machine pem file, ssh_user are

→˓must
ansible_ssh_private_key_file: /home/srallaba/.ssh/test_keypairsk2.key
ansible_ssh_user: centos
ansible_ssh_common_args: "'-o StrictHostKeyChecking=no'"

(continues on next page)

1.1. Getting Started 19

LinchPin Documentation, Release 2.0.0

(continued from previous page)

ansible_python_interpreter: "/usr/bin/python"
- name: ping

Example3: Running python based hook on dummy workspace

• Workspace tree:

.

credentials hooks python test_python test.py inventories layouts
dummy-layout.yml linchpin.conf PinFile resources topologies

• Pinfile:

dummy_target:

topology: topology_name: “dummy” resource_groups: - resource_group_name: “dummy”

resource_group_type: “dummy” resource_definitions: - role: “dummy_node”

name: “web” count: 1

layout:

inventory_layout:

vars: hostname: __IP__

hosts:

example-node: count: 1 host_groups:

– example

hooks:

preup:

– name: test_python type: python context: False actions: - test.py hello hi # hello hi will be
command line parameters parameters passed to script test.py

Linchpin Custom Action Managers

Linchpin custom action managers:

In linchpin, ActionManagers are set of python interfaces responsible for execution of linchpin hook based on their
type. There are two types of ActionManagers builtins and custom.

Here’s a list of built-in Action Managers:

• shell: Allows either inline shell commands or an executable shell script

• python: Executes a Python script

• ansible: Executes an Ansible playbook, allowing passing of a vars_file and extra_vars represented as a Python
dict

• nodejs: Executes a Node.js script

• ruby: Executes a Ruby script

20 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

In addition to the above action managers, User can define their custom action manager. custom/userdefined action
managers are helpful when there is a specific runtime end user would like to make use of for executing a hook.

For example, if linchpin end user would like to use a “xyz” language based runtime or a custom command to be run
when certain paramters are passed to a hook. They can do it with help of hook based on custom_action_manager.

Consider the following dummy workspace example for custom_action_manager:

.
credentials
hooks

custom
somecustomhook

custom_action_manager.py
custom_action_manager.pyc
test_custom.py

inventories
layouts
linchpin.conf
linchpin.log
localhost
PinFile
resources
topologies

dummy-topology.yml

dummy_target:

topology:
topology_name: "dummy"
resource_groups:
- resource_group_name: "dummy"

resource_group_type: "dummy"
resource_definitions:
- role: "dummy_node"

name: "web"
count: 1

layout:
inventory_layout:

vars:
hostname: __IP__

hosts:
example-node:
count: 1
host_groups:
- example

hooks:
postup:

- name: somecustomhook
type: custom
action_manager: custom_action_manager.py
action_manager: /path/to/manager
if not absolute path
linchpin searches in hooks folder configured
context: True
actions:
- script: some_script.go

As you can see in the above structure the custom hook follows the same structure of a userdefined hook. However, we

1.1. Getting Started 21

LinchPin Documentation, Release 2.0.0

also need to add python interface custom_action_manager.py (which can be named any) within thehooks folder or the
absolute path to the python file is to be mentioned in the Pinfile

In order to write a custom_action_manager one has to implement builtin linchpin ActionManager class overriding the
following functions:

• validate: (optional): validate schema for hook designed

• load: How to load the context parameters

• execute: Responsible for executing the files based on the parameters

Once the above functions are implemented the class file can be included in Pinfile.

Following is an example for the python interface implemented:

import os
import yaml
import json

from cerberus import Validator

from linchpin.exceptions import HookError
from linchpin.hooks.action_managers.action_manager import ActionManager

class CustomActionManager(ActionManager):

def __init__(self, name, action_data, target_data, **kwargs):

"""
The following is an example for CustomActionManager
AnsibleActionManager constructor
:param name: Name of Action Manager , (ie., ansible)
:param action_data: dictionary of action_block
consists of set of actions
example:
- name: nameofthehook
type: custom
actions:
- script: test_playbook.yaml

:param target_data: Target specific data defined in PinFile
:param kwargs: anyother keyword args passed as metadata
"""

self.name = name
self.action_data = action_data
self.target_data = target_data
self.context = kwargs.get("context", True)
self.kwargs = kwargs

def validate(self):

"""
Validates the action_block based on the cerberus schema
example:: ansible_action_block::::
- name: nameofthehook
type: customhook
actions:

(continues on next page)

22 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

- script: test_playbook.yaml
"""
"""
schema = {

'name': {'type': 'string', 'required': True},
'type': {'type': 'string', 'allowed': ['custom']},
'path': {'type': 'string', 'required': False},
'context': {'type': 'boolean', 'required': False},
'actions': {

'type': 'list',
'schema': {

'type': 'dict',
'schema': {

'script': {'type': 'string', 'required': True}
}

},
'required': True

}
}

v = Validator(schema)
status = v.validate(self.action_data)

if not status:
raise HookError("Invalid syntax: {0}".format((v.errors)))

else:
return status

def load(self):

"""
Loads the ansible specific managers and loaders
"""
return True

def get_ctx_params(self):

"""
Reformats the ansible specific context variables
"""

ctx_params = {}
ctx_params["resource_file"] = (

self.target_data.get("resource_file", None))
ctx_params["layout_file"] = self.target_data.get("layout_file", None)
ctx_params["inventory_file"] = (

self.target_data.get("inventory_file", None))

return ctx_params

def execute(self):

"""
Executes the action_block in the PinFile
The following logic just prints out path of the script being used

(continues on next page)

1.1. Getting Started 23

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"""

self.load()
extra_vars = {}
runners = []

print("This is the custom hook that runs custom logic")

for action in self.action_data["actions"]:
path = self.action_data["path"]
script = action.get("script")
print(script)
print(path)

Tutorials

There are several tutorials available to help you learn how to use LinchPin.

Provisioning AWS EC2 with LinchPin

LinchPin can be used to provision compute instances on Amazon Web Services. If you need to familiarize yourself
with EC2, read this. Now let’s step through the process of creating a new workspace for provisioning EC2

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin
fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in
the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --
→˓branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the
topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The
following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related
provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an
optional layout. We’ll explain what each of those means later on in further detail

24 Chapter 1. Why LinchPin?

https://docs.aws.amazon.com/ec2/index.html#lang/en_us

LinchPin Documentation, Release 2.0.0

Creating a Topology

Now that we have a PinFile, its time to add the code for an AWS EC2 instance. Edit your PinFile so it looks like the
one below.

simple:

topology:
topology_name: simple
resource_groups:
- resource_group_name: aws_simple

resource_group_type: aws
resource_definitions:
- name: simple_ec2

role: aws_ec2
flavor: m1.small
count: 1

There are a number of other fields available for these two roles. Information about those fields as well as the other
AWS roles can be found on the AWS provider page.

A resource group is a group of resources related to a single provider. In this example we have an AWS resource group
that defines one type of AWS resources. We could also define an OpenStack resource group below it that provisions
a handful of OpenStack Server nodes. A single resource group can contain many resource definitions. A resource
definition details the requirements for a specific resource. We could add another resource definition to this topology
to create a security group for our EC2 nodes. Multiple resources can be provisioned from a single resource definition
by editing the count field, but all non-unique properties of the resources will be identical. So the flavor will be the
same, but each node will have a unique name. The name will be {{ name }}_0, {{ name }}_1, etc. from 0 to count.

Credentials

Finally, we need to add credentials to the resource group. AWS provides several ways to provide credentials. LinchPin
supports some of these methods for passing credentials for use with AWS resources.

One method to provide AWS credentials that can be loaded by LinchPin is to use the INI format that the AWS CLI
tool uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also:

providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first is which credentials to use. The second is
where to find the credentials data.

1.1. Getting Started 25

../aws.rst
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

LinchPin Documentation, Release 2.0.0

Using Credentials

In the topology, a user can specific credentials. The credentials are described by specifying the file, then the profile.
As shown above, the filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
- resource_group_name: "aws"
resource_group_type: "aws"
resource_definitions:

- name: demo-day
flavor: m1.small
role: aws_ec2
region: us-east-1
image: ami-984189e2
count: 1

credentials:
filename: aws.key
profile: default

The important part in the above topology is the credentials section. Adding credentials like this will look up, and use
the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is ~/.config/linchpin.

Hint: The default_credentials_path value uses the interpolated :dirs1.5:`default_config_path
<workspace/linchpin.conf#L22>` value, and can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note: The aws.key file could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

26 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include
information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:

inventory_layout:
vars:
hostname: __IP__

hosts:
server:

count: 1
host_groups:
- frontent

host_groups:
all:

vars:
ansible_user: root

frontend:
vars:

ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of
the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment
variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is the current working direc-
tory. If the PinFile has a name (or path) other than {{workspace}}/PinFile, the --pinfile flag can override that.
Finally, -vv sets a verbosity level of 2. As with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file
will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the
inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each
target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars
section of linchpin.conf

1.1. Getting Started 27

LinchPin Documentation, Release 2.0.0

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with
linchpin destroy. However, you may not want to remove every single target from your last provision. For
example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled
“ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with
the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database,
or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which
resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To
list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but
also printed out information for a number of other targets which had been provisioned recently. You can provide a
target as an argument to only print out the given target. You can also group by transaction id with the flag --view
tx. Click here to read more about linchpin journal

28 Chapter 1. Why LinchPin?

../linchpin_journal.rst

LinchPin Documentation, Release 2.0.0

Provisioning Beaker Server with LinchPin

LinchPin can be used to provision compute instances on Beaker. If you need to familiarize yourself with Beaker
Server, read this. Now let’s step through the process of creating a new workspace for provisioning Beaker

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin
fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in
the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --
→˓branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the
topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The
following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related
provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an
optional layout. We’ll explain what each of those means later on in further detail

Creating a Topology

Now that we have a PinFile, its time to add the code for a Beaker server. Edit your PinFile so it looks like the one
below.

simple:

topology:
topology_name: simple
resource_groups:
- resource_group_name: bkr_simple

resource_group_type: beaker
resource_definitions:
- role: bkr_server

recipesets:
- distro: RHEL-7.5

name: rhelsimple
arch: x86_64
variant: Server
count: 1
hostrequires:
- rawxml: '<key_value key="model" op="=" value="KVM"/>'

There are a number of other fields available for these two roles. Information about those fields as well as the other
Beaker roles can be found on the Beaker provider page.

1.1. Getting Started 29

https://beaker-project.org/docs/server-api/
../beaker.rst

LinchPin Documentation, Release 2.0.0

A resource group is a group of resources related to a single provider. In this example we have a Beaker resource
group that defines two different types of Beaker resources. We could also define an AWS resource group below it
that provisions a handful of EC2 nodes. A single resource group can contain many resource definitions. A resource
definition details the requirements for a specific resource. Multiple resources can be provisioned from a single resource
definition by editing the count field, but all non-unique properties of the resources will be identical. So the distro will
be the same, but each node will have a unique name. The name will be {{ name }}_0, {{ name }}_1, etc. from 0 to
count.

Credentials

Finally, we need to add credentials to the resource group.

Beaker provides several ways to authenticate. LinchPin supports these methods.

• Kerberos

• OAuth2

Note: LinchPin doesn’t support the username/password authentication mechanism. It’s also not recommended by the
Beaker Project, except for initial setup.

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include
information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:

inventory_layout:
vars:
hostname: __IP__

hosts:
server:

count: 1
host_groups:
- frontent

host_groups:
all:

vars:
ansible_user: root

frontend:
vars:

ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of
the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment
variables for each of the hosts in a given host group

30 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is the current working direc-
tory. If the PinFile has a name (or path) other than {{workspace}}/PinFile, the --pinfile flag can override that.
Finally, -vv sets a verbosity level of 2. As with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file
will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the
inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each
target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars
section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with
linchpin destroy. However, you may not want to remove every single target from your last provision. For
example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled
“ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with
the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database,
or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which
resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To
list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

(continues on next page)

1.1. Getting Started 31

LinchPin Documentation, Release 2.0.0

(continued from previous page)

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but
also printed out information for a number of other targets which had been provisioned recently. You can provide a
target as an argument to only print out the given target. You can also group by transaction id with the flag --view
tx. Click here to read more about linchpin journal

Provisioning OpenStack Server with LinchPin

LinchPin can be used to provision compute instances on OpenStack. If you need to familiarize yourself with Open-
Stack Server, read this. Now let’s step through the process of creating a new workspace for provisioning OpenStack

Fetch

It is possible that you want to access a workspace that already exists. If that workspace exists online, linchpin
fetch can be used to clone the repository. For example, the OpenShift on OpenStack example from release 1.7.2 in
the linchpin repository can be cloned as follows:

$ linchpin fetch --root docs/source/examples/workspaces openshift-on-openstack --
→˓branch 1.7.2 --dest ./fetch-example https://github.com/CentOS-PaaS-SIG/linchpin

You can even choose to fetch only a certain component of the workspace. For example, if you only wish to fetch the
topologies you can add --type topologies. If you were able to fetch a complete workspace, you can skip to Up

Initialization

Assuming you are creating a workspace from scratch, you can run linchpin init to initialize a workspace. The
following line of code will create a linchpin.conf, dummy PinFile, and README.rst in a directory called “simple”

$ linchpin init simple

The PinFile contains a single target, called simple, which contains a topology but no layout. A group of related
provisioning tasks is called a target. Each target has a topology, which can contain many resource groups, and an
optional layout. We’ll explain what each of those means later on in further detail

32 Chapter 1. Why LinchPin?

../linchpin_journal.rst
https://developer.openstack.org/api-guide/compute/server_concepts.html

LinchPin Documentation, Release 2.0.0

Creating a Topology

Now that we have a PinFile, its time to add the code for an OpenStack server. Edit your PinFile so it looks like the one
below.

simple:
topology:
topology_name: simple
resource_groups:
- resource_group_name: os_simple

resource_group_type: openstack
resource_definitions:
- name: simple_keypair

role: os_keypair
- name: simple_server

role: os_server
flavor: m1.small
keypair: simple_keypair
count: 1

There are a number of other fields available for these two roles. Information about those fields as well as the other
OpenStack roles can be found on the OpenStack provider page.

A resource group is a group of resources related to a single provider. In this example we have an openstack resource
group that defines two different types of openstack resources. We could also define an AWS resource group below it
that provisions a handful of EC2 nodes. A single resource group can contain many resource definitions. A resource
definition details the requirements for a specific resource. Multiple resources can be provisioned from a single resource
definition by editing the count field, but all non-unique properties of the resources will be identical.

Credentials

Finally, we need to add credentials to the resource group. OpenStack provides several ways to provide credentials.
LinchPin supports some of these methods for passing credentials for use with OpenStack resources.

Environment Variables

LinchPin honors the OpenStack environment variables such as $OS_USERNAME, $OS_PROJECT_NAME, etc.

See the OpenStack documentation cli documentation for details.

Note: No credentials files are needed for this method. When LinchPin calls the OpenStack provider, the environment
variables are automatically picked up by the OpenStack Ansible modules, and passed to OpenStack for authentication.

1.1. Getting Started 33

../openstack.rst
https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage

LinchPin Documentation, Release 2.0.0

Using OpenStack Credentials

OpenStack provides a simple file structure using a file called clouds.yaml, to provide authentication to a particular
tenant. A single clouds.yaml file might contain several entries.

clouds:
devstack:
auth:
auth_url: http://192.168.122.10:35357/
project_name: demo
username: demo
password: 0penstack

region_name: RegionOne
trystack:
auth:
auth_url: http://auth.trystack.com:8080/
project_name: trystack
username: herlo-trystack-3855e889
password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An OpenStack topology can have a credentials section for each resource_group, which requires the filename,
and the profile name.

It’s worth noting that we can’t give you credentials to use, so you’ll have to provide your own filename and profile
here. By default, LinchPin searches for the filename in {{ workspace}}/credentials but can be made to search other
places by setting the evars.default_credentials_path variable in your linchpin.conf. The credentials path
can also be overridden by using the --creds-path flag.

topology_name: topo
resource_groups:
- resource_group_name: openstack
resource_group_type: openstack
resource_definitions:

.. snip ..

credentials:
filename: clouds.yaml
profile: devstack

Creating a Layout

LinchPin can use layouts to describe what an Ansible inventory might look like after provisioning. Layouts can include
information such as IP addresses, zones, and FQDNs. Under the simple key, put the following data:

layout:

inventory_layout:
vars:
hostname: __IP__

hosts:
server:

count: 1

(continues on next page)

34 Chapter 1. Why LinchPin?

https://docs.openstack.org/os-client-config/latest/user/configuration.html

LinchPin Documentation, Release 2.0.0

(continued from previous page)

host_groups:
- frontent

host_groups:
all:

vars:
ansible_user: root

frontend:
vars:

ansible_ssh_common_args: -o StrictHostKeyChecking=no

After provisioning the hosts, LinchPin will through each host type in the inventory_layout, pop count hosts off of
the list, and add them to the relevant host groups. The host_groups section of the layout is used to set environment
variables for each of the hosts in a given host group

Up

Once the resources have been defined, LinchPin can be run as follows:

$ linchpin --workspace . -vv up simple

The --workspace flag references the relevant workspace. By default, the workspace is the current working direc-
tory. If the PinFile has a name (or path) other than {{workspace}}/PinFile, the --pinfile flag can override that.
Finally, -vv sets a verbosity level of 2. As with Ansible, the verbosity can be set between 0 and 4.

If the provisioning was successful, you should see some output at the bottom that looks something like this:

ID: 122
Action: up

Target Run ID uHash Exit Code

simple 1 3a0c59 0

You can use that uhash value to get the inventory generated according to the layout we discussed above. The file
will be titled inventories/${target}-${uhash} but you can change this naming schema by editing the
inventory_file field in the inventory_layout section of the layout. When linchpin up is run, each
target will generate its own inventory layout. The inventories folder and inventory_path can also be set in the evars
section of linchpin.conf

Destroy

At some point you’ll no longer need the machines you provisioned. You can destroy the provisioned machines with
linchpin destroy. However, you may not want to remove every single target from your last provision. For
example, lets say you ran the simple provision above, then ran a few others. You could use the transaction ID, labeled
“ID” above, to do so.

$ linchpin -vv destroy -t 122

You may also have provisioned multiple targets at once. If you only want to destroy one of them, you can do so with
the name of the target and the run ID.

$ linchpin -vv destroy -r 1 simple

1.1. Getting Started 35

LinchPin Documentation, Release 2.0.0

Journal

Each time you provision or destroy resources with LinchPin, information about the run is stored in the Run Database,
or RunDB. Data from the RunDB can be printed using linchpin journal. This allows you to keep track of which
resources you have provisioned but haven’t destroyed and gather the transaction and run IDs for those resources. To
list each resource by target, simply run:

$ linchpin journal

Target: simple
run_id action uhash rc
--
2 destroy bb8064 0
1 up bb8064 0

Target: beaker-openstack
run_id action uhash rc
--
2 destroy b1e364 2
1 up b1e364 2

Target: os-subnet
run_id action uhash rc
--
3 destroy c619ac 0
2 up c619ac 0
1 destroy ab9d81 0

As you can see, linchpin printed out the run data for the simple target that we provisioned and destroyed above, but
also printed out information for a number of other targets which had been provisioned recently. You can provide a
target as an argument to only print out the given target. You can also group by transaction id with the flag --view
tx. Click here to read more about linchpin journal

See also:

Commands (CLI) Linchpin Command-Line Interface

workflow Common LinchPin Workflows

Managing Resources Managing Resources

Examples for all Providers Providers in Detail

1.1.8 Monitor and Progress Bar

Linchpin execution of Ansible is mostly a black box, where Ansible receives input from Linchpin and returns expected
output. The output is received in a form of files and database changes. However, in version 1.9.1 there was another
channel of communication was created, a message bus. Before version 1.9.1, Linchpin was calling Ansible in a
synchronize mode, that is once Ansible was called, Linchpin was waiting for it to finish the execution. To support
progress bar, ZMQ message bus and multiprocessing was added. From version 1.9.1, Linchpin by default runs Ansible
in multiprocess with a “monitoring” process. The ZMQ message bus was added to Ansible using plugins, and to the
monitoring process. That means that Ansible, on different events or steps will able to communicate with Linchpin.
For progress bar it meant that Ansible could update Linchpin with its progress in details, which allows better user
experience and understanding of deployment or tear down progress. The new functionality is limited to provisioning
process (‘up’ and ‘destroy’) and can be disabled or limited with options –no-monitor or –no-progress:

–no-monitor will disable multiprocessing entirely and thus also disables the progress bar.

36 Chapter 1. Why LinchPin?

../linchpin_journal.rst

LinchPin Documentation, Release 2.0.0

–no-progress will cancel the progress bar which could be helpful in shell scripts or in CI, but the monitor-
ing/multiprocessing remains.

Examples:

Linchpin runs with multiprocessing and progress bar enabled
linchpin up

Linchpin runs in verbose mode, progress bar disabled
linchpin -vvvv up

Linchpin runs with disabled multiprocessing and without progress bar
linchpin --no-monitor up

Linchpin runs without progress bar but with multiprocessing
linchpin up --no-progress

The progress bar and multiprocessing can be disabled via linchpin.conf settings file:

[progress_bar]
no_progress = True

[monitor]
no_monitor = True

1.1.9 Linchpin API (until 1.7.5)

LinchPin can be used to provision resources by invoking linchpin python API.

Provisioning example using a Pinfile

While provisioning with a Pinfile as a dictionary we have to set various config parameters and workspaces as follows.

from linchpin import LinchpinAPI
from linchpin.context import LinchpinContext

context = LinchpinContext()
context.setup_logging()
context.load_config()
context.load_global_evars()
context.set_cfg('lp', 'workspace', '.')
context.set_evar('workspace', '.')
context.set_evar('debug_mode', True)
linchpin_api = LinchpinAPI(context)
pindict = {

"simple": {
"layout": {

"inventory_layout": {
"hosts": {
"example-node": {

"count": 1,
"host_groups": [
"example"

]
}

(continues on next page)

1.1. Getting Started 37

LinchPin Documentation, Release 2.0.0

(continued from previous page)

},
"vars": {
"hostname": "__IP__",
"ansible_ssh_private_key_file": "~/.ssh/id_rsa"

}
}

},
"topology": {

"topology_name": "simple",
"resource_groups": [

{
"resource_group_name": "os-server-new",
"resource_definitions": [

{
"count": 1,
"name": "database",
"image": "CentOS-7-x86_64-GenericCloud-1612",
"keypair": "ci-factory",
"role": "os_server",
"fip_pool": "10.8.240.0",
"flavor": "m1.small",
"networks": [
"QE-test"

]
}

],
"resource_group_type": "openstack",
"credentials": {

"filename": "clouds.yaml",
"profile": "default"

}
}

]
}

}
}

credentials alternatives: file vs environment variables
linchpin_api.do_action(pindict, action='up')
inorder to destroy the pinfile we need to pass action parameter as destroy
linchpin_api.do_action(pindict, action='destroy')

1.1.10 Linchpin revised API (Preview in 1.7.6)

In linchpin new api restructure linchpin provides two classes Pinfile, Workspace to provision resources

This feature is currently in Preview state for 1.7.6 will be available from version 2.0

Examples for provisioning using linchpin api Pinfile and workspace are as follows

import json
import linchpin
from linchpin.api import Pinfile
from linchpin.api import Workspace

workspace requires workspace path
(continues on next page)

38 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

wksp = Workspace(path="/tmp/tmp3BAAhC/")
wksp.up()
#prints the inventory generated after provisioning
wksp.get_inventory(inv_format="json")
wksp.destroy()

Provisioning with Pinfile structure

pinfile="""
dummy-test:
topology:

topology_name: "dummy_cluster" # topology name
resource_groups:
- resource_group_name: "dummy"

resource_group_type: "dummy"
resource_definitions:
- name: "web"
role: "dummy_node"
count: 3

- name: "test"
role: "dummy_node"
count: 1

layout:
inventory_layout:

vars:
hostname: __IP__

hosts:
example-node:
count: 3
host_groups:
- example

test-node:
count: 1
host_groups:
- test

host_groups:
all:
vars:
ansible_user: root

"""
import yaml
pinfile = yaml.load(pinfile)
pf = Pinfile(pinfile=pinfile)
print(pf.validate())
#pf.up()
#pf.destroy()

workspace with external credential path
wsp = Workspace(path="/home/srallaba/workspace/lp_ws_backup/lp_ws/ex_hooks/testw/

→˓dummy-creds-vault")
print(wsp.validate())
wsp.set_creds_path("/home/srallaba/workspace/lp_ws_backup/lp_ws/ex_hooks/testw/

→˓dummy-creds-vault/credentials/")
wsp.set_evar("vault_password","testval")
wsp.up()
wsp.get_inventory()
wsp.destroy()

1.1. Getting Started 39

LinchPin Documentation, Release 2.0.0

Note: The both examples provided are backward compatible in nature. Introduction of new API does not change
functionality the existing API

Refer the API reference section here Linchpin API and Context Modules for more documentation on specific functions

See also:

Commands (CLI) Linchpin Command-Line Interface

workflow Common LinchPin Workflows

Managing Resources Managing Resources

Examples for all Providers Providers in Detail

1.2 Documentation

1.2.1 Running LinchPin

This guide will walk you through the basics of using LinchPin. LinchPin is a command-line utility, a Python API, and
Ansible playbooks. As this guide is intentionally brief to get you started, a more complete version can be found in the
documentation links found to the left in the index.

Topics

• Running LinchPin

– Running the linchpin command

* Getting Help

* Basic Usage

* Options and Arguments

* Combining Options

* Common Usage

· Verbose Output

· Specify an Alternate PinFile

· Specify an Alternate Workspace

· Provide Credentials

– Workspaces

* Initialization (init)

– Resources

* Topology

* Inventory Layout

* PinFile

– Provisioning (up)

40 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

– Teardown (destroy)

– Authentication

* Credentials

· Credentials File

· Using Credentials

· Credentials Location

Running the linchpin command

The linchpin CLI is used to perform tasks related to managing resources. For detail about a specific command, see
Commands (CLI).

Getting Help

Getting help from the command line is very simple. Running either linchpin or linchpin --help will yield
the command line help page.

$ linchpin --help
Usage: linchpin [OPTIONS] COMMAND [ARGS]...

linchpin: hybrid cloud orchestration

Options:
-c, --config PATH Path to config file
-p, --pinfile PINFILE Use a name for the PinFile different from

the configuration.
-d, --template-data TEMPLATE_DATA

Template data passed to PinFile template
-o, --output-pinfile OUTPUT_PINFILE

Write out PinFile to provided location
-w, --workspace PATH Use the specified workspace. Also works if

the familiar Jenkins WORKSPACE environment
variable is set

-v, --verbose Enable verbose output
--version Prints the version and exits
--creds-path PATH Use the specified credentials path. Also

works if CREDS_PATH environment variable is
set

-h, --help Show this message and exit.

Commands:
init Initializes a linchpin project.
up Provisions nodes from the given target(s) in...
destroy Destroys nodes from the given target(s) in...
fetch Fetches a specified linchpin workspace or...
journal Display information stored in Run Database...

For subcommands, like linchpin up, passing the --help or -h option produces help related to the provided
subcommand.

1.2. Documentation 41

LinchPin Documentation, Release 2.0.0

$ linchpin up -h
Usage: linchpin up [OPTIONS] TARGETS

Provisions nodes from the given target(s) in the given PinFile.

targets: Provision ONLY the listed target(s). If omitted, ALL targets
in the appropriate PinFile will be provisioned.

run-id: Use the data from the provided run_id value

Options:
-r, --run-id run_id Idempotently provision using `run-id` data
-h, --help Show this message and exit.

As can easily be seen, linchpin up has additional arguments and options.

Basic Usage

The most basic usage of linchpin might be to perform an up action. This simple command assumes a PinFile in
the workspace (current directory by default), with one target dummy.

$ linchpin up
Action 'up' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 75 79b9 0

Upon completion, the systems defined in the dummy target will be provisioned. An equally basic usage of linchpin
is the destroy action. This command is peformed using the same PinFile and target.

$ linchpin destroy
Action 'destroy' on Target 'dummy' is complete

Target Run ID uHash Exit Code

dummy 76 79b9 0

Upon completion, the systems which were provisioned, are destroyed (or torn down).

Preview Feature:

linchpin up and destroy includes –use-shell parameter which makes linchpin run as a subprocess rather than ansible
api call usefull when we would like to overwrite environment varibles

$ linchpin -vvvv up --use-shell --env-vars TESTENV testenv value

42 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Options and Arguments

The most common argument available in linchpin is the TARGET . Generally, the PinFile will have many targets
available, but only one or two will be requested.

$ linchpin up dummy-new libvirt-new
Action 'up' on Target 'dummy' is complete
Action 'up' on Target 'libvirt' is complete

Target Run ID uHash Exit Code

dummy 77 73b1 0
libvirt 39 dc2c 0

In some cases, you may wish to use a different PinFile.

$ linchpin -p PinFile.json up
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 29 c70a 0

As you can see, this PinFile had a target called dummy-new, and it was the only target listed.

Other common options include:

• --verbose (-v) to get more output

• --config (-c) to specify an alternate configuration file

• --workspace (-w) to specify an alternate workspace

Combining Options

The linchpin command also allows combinining of general options with subcommand options. A good example
of these might be to use the verbose (-v) option. This is very helpful in both the up and destroy subcommands.

$ linchpin -v up dummy-new -r 72
using data from run_id: 72
rundb_id: 73
uhash: a48d
calling: preup
hook preup initiated

PLAY [schema check and Pre Provisioning Activities on topology_file] ********

TASK [Gathering Facts] **
ok: [localhost]

TASK [common : use linchpin_config if provided] *****************************

What can be immediately observed, is that the -v option provides more verbose output of a particular task. This
can be useful for troubleshooiting or giving more detail about a specitic task. The -v option is placed before the
subcommand. The -r option, since it applies directly to the up subcommand, it is placed afterward. Investigating
the linchpin -help and linchpin up --help can help differentiate if there’s confusion.

1.2. Documentation 43

LinchPin Documentation, Release 2.0.0

Common Usage

Verbose Output

$ linchpin -v up dummy-new

Specify an Alternate PinFile

$ linchpin -vp Pinfile.alt up

Specify an Alternate Workspace

$ export WORKSPACE=/tmp/my_workspace
$ linchpin up libvirt

or

$ linchpin -vw /path/to/workspace destroy openshift

Provide Credentials

$ export CREDS_PATH=/tmp/my_workspace
$ linchpin -v up libvirt

or

$ linchpin -v --creds-path /credentials/path up openstack

Note: The value provided to the --creds-path option is a directory, NOT a file. This is generally due to the
topology containing the filename where the credentials are stored.

Workspaces

Initialization (init)

Running linchpin initwill generate the workspace directory structure, along with an example PinFile, topology,
and layout files. Performing the following tasks will generate a simple dummy folder with All in one PinFile which
includes topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
Created destination workspace <path>
$ tree

dummy

(continues on next page)

44 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

PinFile
PinFile.json
README.rst

linchpin.log

Resources

With LinchPin, resources are king. Defining, managing, and generating outputs are all done using a declarative syntax.
Resources are managed via the PinFile. The PinFile can hold two additional files, the topology, and layout. Linchpin
also supports Linchpin Hooks.

Topology

The topology is declarative, written in YAML or JSON (v1.5+), and defines how the provisioned systems should look
after executing the linchpin up command. A simple dummy topology is shown here.

topology_name: "dummy_cluster" # topology name
resource_groups:
- resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

- name: "web"
role: "dummy_node"
count: 1

This topology describes a single dummy system that will be provisioned when linchpin up is executed. Once provi-
sioned, the resources outputs are stored for reference and later lookup. Additional topology examples can be found in
:dirs1.5:`the source code <workspace/topologies>`.

Inventory Layout

An inventory_layout (or layout) is written in YAML or JSON (v1.5+), and defines how the provisioned resources
should look in an Ansible static inventory file. The inventory is generated from the resources provisioned by the
topology and the layout data. A layout is shown here.

inventory_layout:
vars:
hostname: __IP__

hosts:
example-node:
count: 1
host_groups:
- example

The above YAML allows for interpolation of the ip address, or hostname as a component of a generated inventory. A
host group called example will be added to the Ansible static inventory. The all group always exists, and includes all
provisioned hosts.

1.2. Documentation 45

LinchPin Documentation, Release 2.0.0

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

Note: A keen observer might notice the filename and hostname are appended with -0446. This value is called the
uhash or unique-ish hash. Most providers allow for unique identifiers to be assigned automatically to each hostname
as well as the inventory name. This provides a flexible way to repeat the process, but manage multiple resource sets at
the same time.

Advanced layout examples can be found by reading ra_inventory_layouts.

Note: Additional layout examples can be found in :dirs1.5:`the source code <workspace/layouts>`.

PinFile

A PinFile takes a topology and an optional layout, among other options, as a combined set of configurations as a
resource for provisioning. An example Pinfile is shown.

Example 1
dummy_cluster:

topology: dummy-topology.yml
layout: dummy-layout.yml

Example 2
dummy-topo:

topology:
topology_name: "dummy_cluster" # topology name
resource_groups:
- resource_group_name: "dummy"

resource_group_type: "dummy"
resource_definitions:
- name: "{{ distro | default('') }}web"

role: "dummy_node"
count: 3

- name: "{{ distro | default('') }}test"
role: "dummy_node"
count: 1

layout:
inventory_layout:

vars:
hostname: __IP__

hosts:
example-node:
count: 3
host_groups:
- example

test-node:
count: 1

(continues on next page)

46 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

host_groups:
- test

The PinFile collects the given topology and layout into one place. Many targets can be referenced in a single PinFile.

To use a PinFile with an Ansible Galaxy role, simply provide the role name as the resource_group_type. An example
is shown below.

dummy-new:
topology:
topology_name: "dummy_cluster" # topology name
resource_groups:
- resource_group_name: "dummy"
resource_group_type: "14rcole.ansible_role_lp_dummy"
resource_definitions:
- name: "{{ distro | default('') }}web"

role: "dummy_node"
count: 3

- name: "{{ distro | default('') }}test"
role: "dummy_node"
count: 1

More detail about the PinFile can be found in the PinFiles document.

Additional PinFile examples can be found in :dirs1.5:`the source code <workspace>`

Provisioning (up)

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command
linchpin up should provision the resources and inventory files based upon the topology_name value. In this
case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 70 0446 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered
elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

1.2. Documentation 47

LinchPin Documentation, Release 2.0.0

Teardown (destroy)

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources
have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make
sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider)
to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology
during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note: The teardown functionality is slightly more limited around ephemeral resources, like networking, storage,
etc. It is possible that a network resource could be used with multiple cloud instances. In this way, performing a
linchpin destroy does not teardown certain resources. This is dependent on each providers implementation.

Authentication

Some Examples for all Providers require authentication to acquire managing_resources. LinchPin provides tools for
these providers to authenticate. The tools are called credentials.

Credentials

Credentials come in many forms. LinchPin wants to let the user control how the credentials are formatted. In this way,
LinchPin supports the standard formatting and options for a provider. The only constraints that exist are how to tell
LinchPin which credentials to use, and where they credentials data resides. In every case, LinchPin tries to use the
data similarly to the way the provider might.

One method to provide AWS credentials that can be loaded by LinchPin is to use the INI format that the AWS CLI
tool uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

(continues on next page)

48 Chapter 1. Why LinchPin?

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

LinchPin Documentation, Release 2.0.0

(continued from previous page)

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also:

Examples for all Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first is which credentials to use. The second is
where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are described by specifying the file, then the profile.
As shown above, the filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
- resource_group_name: "aws"
resource_group_type: "aws"
resource_definitions:

- name: demo-day
flavor: m1.small
role: aws_ec2
region: us-east-1
image: ami-984189e2
count: 1

credentials:
filename: aws.key
profile: default

The important part in the above topology is the credentials section. Adding credentials like this will look up, and use
the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is ~/.config/linchpin.

Hint: The default_credentials_path value uses the interpolated :dirs1.5:`default_config_path
<workspace/linchpin.conf#L22>` value, and can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note: The aws.key file could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Or it can be set as an environment variable.

1.2. Documentation 49

LinchPin Documentation, Release 2.0.0

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

See also:

Commands (CLI) Linchpin Command-Line Interface

workflow Common LinchPin Workflows

Managing Resources Managing Resources

Examples for all Providers Providers in Detail

1.2.2 General Configuration

Managing LinchPin requires a few configuration files. Most configurations are stored in the :code1.5:`linchpin con-
figuration <linchpin/linchpin.constants>` file.

Note: in versions before 1.5.1, the file was called linchpin.conf. This changed in 1.5.1 due to backward compatibility
requirements, and the need to load configuration defaults. The linchpin.conf continues to work as expected.

The settings in this file are loaded automatically as defaults.

However, it’s possible to override any setting in linchpin. For the command line shell, three different locations are
checked for linchpin.conf files. Files are checked in the following order:

1. /etc/linchpin.conf

2. ~/.config/linchpin/linchpin.conf

3. /path/to/workspace/linchpin.conf

The LinchPin configuration parser supports overriding and extending configurations. If linchpin finds the same section
and setting in more than one file, the header that was parsed more recently will provide the configuration. In this
way user can override default configurations. Commonly, this is done by placing a linchpin.conf in the root of the
workspace.

Adding/Overriding a Section

New in version 1.2.0

Adding a section to the configuration is simple. The best approach is to create a linchpin.conf in the appropriate
location from the locations above.

Once created, add a section. The section can be a new section, or it can overwrite an existing section.

[lp]
move the rundb_connection to a global scope
rundb_conn = %(default_config_path)s/rundb/rundb-::mac::.json

module_folder = library
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

rundb_type = TinyRunDB
rundb_conn_type = file
rundb_schema = {"action": "",

"inputs": [],

(continues on next page)

50 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"outputs": [],
"start": "",
"end": "",
"rc": 0,
"uhash": ""}

rundb_hash = sha256

dateformat = %%m/%%d/%%Y %%I:%%M:%%S %%p
default_pinfile = PinFile

Warning: For version 1.5.0 and earlier, if overwriting a section, all entries from the entire section must be
updated.

Overriding a configuration item

New in version 1.5.1

Each item within a section can be a new setting, or override a default setting, as shown.

[lp]
move the rundb_connection to a global scope
rundb_conn = ~/.config/linchpin/rundb-::mac::.json

As can be plainly seen, the configuration has been updated to use a different path to the rundb_conn. This section
now uses a user-based RunDB, which can be useful in some scenarios.

Useful Configuration Options

These are some configuration options that may be useful to adjust for your needs. Each configuration option listed
here is in a format of section.option.

Note: For clarity, this would appear in a configuration file where the section is in brackets (eg. [section]) and the
option would have a option = value set within the section.

lp.external_providers_path New in version 1.5.0

Default value: %(default_config_path)s/linchpin-x

Providers playbooks can be created outside of the core of linchpin, if desired. When using these external
providers, linchpin will use the external_providers_path to lookup the playbooks and attempt to run them.

See Examples for all Providers for more information.

lp.rundb_conn New in version 1.2.0

Default value:

• v1.2.0: /home/user/.config/linchpin/rundb-<macaddress>.json

• v1.2.2+: /path/to/workspace/.rundb/rundb.json

The RunDB is a single json file, which records each transaction involving resources. A run_id and uHash are
assigned, along with other useful information. The lp.rundb_conn describes the location to store the RunDB so
data can be retrieved during execution.

1.2. Documentation 51

LinchPin Documentation, Release 2.0.0

evars._async Updated in version 1.2.0

Default value: False

Previous key name: evars.async

Some providers (eg. openstack, aws, ovirt) support asynchronous provisioning. This means that a topology
containing many resources would provision or destroy all at once. LinchPin then waits for responses from these
asynchronous tasks, and returns the success or failure. If the amount of resources is large, asynchronous tasks
reduce the wait time immensely.

Reason for change: Avoiding conflict with existing Ansible variable.

Starting in Ansible 2.4.x, the async variable could not be set internally. The _async value is now passed in and
sets the Ansible async variable to its value.

evars.default_credentials_path Default value: %(default_config_path)s

Storing credentials for multiple providers can be useful. It also may be useful to change the default here to point
to a given location.

Note: The --creds-path option, or $CREDS_PATH environment variable overrides this option

evars.inventory_file Default value: None

If the unique-hash feature is turned on, the default inventory_file value is built up by combining the workspace
path, inventories_folder topology_name, the uhash, and the extensions.inventory configuration value. The re-
sulting file might look like this:

/path/to/workspace/inventories/dummy_cluster-049e.inventory

It may be desired to store the inventory without the uhash, or define a completely different structure altogether.

ansible.console Default value: False

This configuration option controls whether the output from the Ansible console is printed. In the linchpin
CLI tool, it’s the equivalent of the -v (--verbose) option.

1.2.3 Commands (CLI)

This document covers the linchpin Command Line Interface (CLI) in detail. Each page contains a description and
explanation for each component. For an overview, see Running the linchpin command.

linchpin init

Running linchpin initwill generate the workspace directory structure, along with an example PinFile, topology,
and layout files. Performing the following tasks will generate a simple dummy folder with All in one PinFile which
includes topology, and layout structure.

$ pwd
/tmp/workspace
$ linchpin init
Created destination workspace <path>
$ tree

dummy
PinFile

(continues on next page)

52 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

PinFile.json
README.rst

linchpin.log

linchpin up

Once a PinFile, topology, and optional layout are in place, provisioning can happen. Performing the command
linchpin up should provision the resources and inventory files based upon the topology_name value. In this
case, is dummy_cluster.

$ linchpin up
target: dummy_cluster, action: up
Action 'up' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy-new 83 a18e9a 0
dummy-topo 70 044695 0

As you can see, the generated inventory file has the right data. This can be used in many ways, which will be covered
elsewhere in the documentation.

$ cat inventories/dummy_cluster-0446.inventory
[example]
web-0446-0.example.net hostname=web-0446-0.example.net

[all]
web-0446-0.example.net hostname=web-0446-0.example.net

To verify resources with the dummy cluster, check /tmp/dummy.hosts

$ cat /tmp/dummy.hosts
web-0446-0.example.net
test-0446-0.example.net

A subset of the hosts in a PinFile can be provisioned by listing each of them at the end of the command

$ linchin -vv up dummy-new

Target Run ID uHash Exit Code

dummy-new 83 a18e9a 0

Preview Feature:

linchpin up and destroy includes –use-shell parameter which makes linchpin run as a subprocess rather than ansible
api call usefull when we would like to overwrite environment varibles

$ linchpin -vvvv up dummy-new --use-shell --env-vars TESTENV testenv value

1.2. Documentation 53

LinchPin Documentation, Release 2.0.0

linchpin destroy

As expected, LinchPin can also perform teardown of resources. A teardown action generally expects that resources
have been provisioned. However, because Ansible is idempotent, linchpin destroy will only check to make
sure the resources are up. Only if the resources are already up will the teardown happen.

The command linchpin destroy will look up the resources and/or topology files (depending on the provider)
to determine the proper teardown procedure. The dummy Ansible role does not use the resources, only the topology
during teardown.

$ linchpin destroy
target: dummy_cluster, action: destroy
Action 'destroy' on Target 'dummy_cluster' is complete

Target Run ID uHash Exit Code

dummy_cluster 71 0446 0

Verify the /tmp/dummy.hosts file to ensure the records have been removed.

$ cat /tmp/dummy.hosts
-- EMPTY FILE --

Note: The teardown functionality is slightly more limited around ephemeral resources, like networking, storage,
etc. It is possible that a network resource could be used with multiple cloud instances. In this way, performing a
linchpin destroy does not teardown certain resources. This is dependent on each providers implementation.

See also:

Examples for all Providers

linchpin journal

Upon completion of any provision (up) or teardown (destroy) task, there’s a record that is created and stored in the
RunDB. The linchpin journal command displays data about these tasks.

$ linchpin journal --help
Usage: linchpin journal [OPTIONS] TARGETS

Display information stored in Run Database

view: How the journal is displayed

'target': show results of transactions on listed targets
(or all if omitted)

'tx': show results of each transaction, with results
of associated targets used

(Default: target)

count: Number of records to show per target

targets: Display data for the listed target(s). If omitted, the latest
records for any/all targets in the RunDB will be displayed.

(continues on next page)

54 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

fields: Comma separated list of fields to show in the display.
(Default: action, uhash, rc)

(available fields are: uhash, rc, start, end, action)

Options:
--view VIEW Type of view display (default: target)
-c, --count COUNT (up to) number of records to return (default: 3)
-f, --fields FIELDS List the fields to display
-h, --help Show this message and exit.

There are two specific ways to view the data using the journal, by ‘target’ and ‘transactions (tx)’.

Target

The default view, ‘target’, is displayed using the target. The data displayed to the screen shows the last three (3) tasks
per target, along with some useful information.

$ linchpin journal --view=target dummy-new

Target: dummy-new
run_id action uhash rc
--
5 up 0658 0
4 destroy cf22 0
3 up cf22 0

Note: The ‘target’ view is the default, making the –view optional.

The target view can show more data as well. Fields (-f, --fields) and count (-c, --count) are useful
options.

$ linchpin journal dummy-new -f action,uhash,end -c 5

Target: dummy-new
run_id action uhash end
--
6 up cd00 12/15/2017 05:12:52 PM
5 up 0658 12/15/2017 05:10:52 PM
4 destroy cf22 12/15/2017 05:10:29 PM
3 up cf22 12/15/2017 05:10:17 PM
2 destroy 6d82 12/15/2017 05:10:06 PM
1 up 6d82 12/15/2017 05:09:52 PM

It is simple to see that the output now has five (5) records, each containing the run_id, action, uhash, and end date.

The data here can be used to perform idempotent (repetitive) tasks, like running the up action on run_id: 5 again.

$ linchpin up dummy-new -r 6
Action 'up' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

(continues on next page)

1.2. Documentation 55

LinchPin Documentation, Release 2.0.0

(continued from previous page)

dummy-new 7 cd00 0

What might not be immediately obvious, is that the uhash on Run ID: 7 is identical to the run_id: 6 shown in the
previous linchpin journal output. Essentially, the same task was run again.

Note: If LinchPin is configured with the unique-hash feature, and the provider supports naming, resources can have
unique names. These features are turned off by default.

The destroy action will automatically look up the last task with an up action and destroy it. If other resources are
needed to be destroyed, a run_id should be passed to the task.

$ linchpin destroy dummy-new -r 5
Action 'destroy' on Target 'dummy-new' is complete

Target Run ID uHash Exit Code

dummy-new 8 0658 0

Transactions

The transaction view, provides data based upon each transaction.

$ linchpin journal --view tx --count 1

ID: 130 Action: up

Target Run ID uHash Exit Code

dummy-new 279 920c 0
libvirt 121 ef96 0

===

In the future, the transaction view will also provide output for these items.

linchpin fetch

The linchpin fetch command provides a simple way to access a resource from a remote location. One could
simply perform a git clone, or use wget to download a workspace. However, linchpin fetch makes this
process simpler, and includes some tooling to make the workflow smooth.

$ linchpin fetch --help
Usage: linchpin fetch [OPTIONS] REMOTE

Fetches a specified linchpin workspace or component from a remote location

Options:
-t, --type TYPE Which component of a workspace to fetch.

(Default: workspace)
-r, --root ROOT Use this to specify the location of the

workspace within the root url. If root is not

(continues on next page)

56 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

set, the root of the given remote will be used.
--dest DEST Workspaces destination, the fetched workspace

will be relative to this location. (Overrides
-w/--workspace)

--branch REF Specify the git branch. Used only with git
protocol (eg. master).

--git Remote is a Git repository (default)
--web Remote is a web directory
--nocache Do not check the cached time, just copy the

data to the destination
-h, --help Show this message and exit.

linchpin validate

Validate Command

The purpose of the validate command is to determine whether topologies and layouts are syntactically valid. If not, it
will provide a list of errors that occured during validation

The command linchpin validate looks at the topology and layout files for each target in a given PinFile. If the topology
is not valid under the current schema, it will attempt to convert the topology to an older schema and try again. If the
topology is still invalid, the command will report the topology and a list of errors found.

Invalid Topologies

Here is a simple PinFile and topology file. The topology file has some errors and will not validate.

libvirt-new:

topology: libvirt-new.yml
layout: libvirt.yml

libvirt:
topology: libvirt.yml
layout: libvirt.yml

libvirt-network:
topology: libvirt-network.yml

topology_name: libvirt-new
resource_groups:
- resource_group_name: libvirt-new
resource_group_type: libvirt
resource_definitions:

- role: libvirt_node
uri: qemu:///system
count: "1"
image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-

→˓GenericCloud-1608.qcow2.xz
memory: 2048
vcpus: 1
arch: x86_64

(continues on next page)

1.2. Documentation 57

LinchPin Documentation, Release 2.0.0

(continued from previous page)

ssh_key: libvirt
networks:
- name: default

additional_storage: 10G
cloud_config:
users:

- name: herlo
gecos: Clint Savage
groups: wheel
sudo: ALL=(ALL) NOPASSWD:ALL
ssh-import-id: gh:herlo
lock_passwd: true

$ linchpin validate
topology for target 'libvirt-network' is valid

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups',
→˓[OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type',
→˓'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri',
→˓ 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-
→˓x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch',
→˓'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), (
→˓'hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config',
→˓OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), (
→˓'groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo
→˓'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:

res_defs[0][count]: value for field 'count' must be of type 'integer'
res_defs[0][networks][0][additional_storage]: field 'additional_storage' could

→˓not be recognized within the schema provided
res_defs[0][name]: field 'name' is required

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

The linchpin validate command can also provide a list of errors against the old schema with the –old-schema flag

$ linchpin validate --old-schema

Topology for target 'libvirt-new' does not validate
topology: 'OrderedDict([('topology_name', 'libvirt-new'), ('resource_groups',
→˓[OrderedDict([('resource_group_name', 'libvirt-new'), ('resource_group_type',
→˓'libvirt'), ('resource_definitions', [OrderedDict([('role', 'libvirt_node'), ('uri',
→˓ 'qemu:///system'), ('image_src', 'http://cloud.centos.org/centos/7/images/CentOS-7-
→˓x86_64-GenericCloud-1608.qcow2.xz'), ('memory', 2048), ('vcpus', '1'), ('arch',
→˓'x86_64'), ('ssh_key', 'libvirt'), ('networks', [OrderedDict([('name', 'default'), (
→˓'hello', 'world')])]), ('additional_storage', '10G'), ('cloud_config',
→˓OrderedDict([('users', [OrderedDict([('name', 'herlo'), ('gecos', 'Clint Savage'), (
→˓'groups', 'wheel'), ('sudo', 'ALL=(ALL) NOPASSWD:ALL'), ('ssh-import-id', 'gh:herlo
→˓'), ('lock_passwd', True)])])])), ('count', 1)])])])])])'
errors:

res_defs[0][networks][0][additional_storage]: field 'additional_storage' could
→˓not be recognized within the schema provided

res_defs[0][name]: field 'name' is required

(continues on next page)

58 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

As you can see, validation under both schemas result in an error stating that the field additional_storage could not
be recognized. In this case, there is simply an indentation error. additional_storage is a recognized field within
resource_definitions but not within the networks sub-schema. Other times this unrecognized field may be a spelling
error. Both fields also flag the missing “name” field, which is required. Both of these errors must be fixed in order for
the topology file to validate. Because making count a string only results in an error when validating against the old
schema, this field does not have to be changed in order for the topology file to pass validation. However, it is best to
change it anyway and keep your topology as up-to-date as possible.

Valid Topologies

The topology below has been fixed so that it will validate under the current schema.

topology_name: libvirt-new
resource_groups:
- resource_group_name: libvirt-new
resource_group_type: libvirt
resource_definitions:

- role: libvirt_node
name: centos71
uri: qemu:///system
count: 1
image_src: http://cloud.centos.org/centos/7/images/CentOS-7-x86_64-

→˓GenericCloud-1608.qcow2.xz
memory: 2048
vcpus: 1
arch: x86_64
ssh_key: libvirt
networks:
- name: default

additional_storage: 10G
cloud_config:
users:
- name: herlo
gecos: Clint Savage
groups: wheel
sudo: ALL=(ALL) NOPASSWD:ALL
ssh-import-id: gh:herlo
lock_passwd: true

If linchpin validate is run on a PinFile containing the topology above, this will be the output:

$ linchpin validate
topology for target 'libvirt-new' is valid
topology for target 'libvirt' is valid under old schema
topology for target 'libvirt-network' is valid

1.2. Documentation 59

LinchPin Documentation, Release 2.0.0

linchpin setup

Some providers require additional dependencies installed on the system running linchpin. Use linchpin setup
to setup the given provider(s) properly.

If a list of providers is ommitted, then it will install dependencies for all providers that need so.

In case you execute linchpin setup with a user not allowed to install packages, then pass the –ask-sudo-pass
option to prompt for the sudo password.

linchpin ssh

The linchpin ssh command provides a simple way to connect to provisioned systems. Instead of looking for the
system in the inventory file and writing an ssh command, it is easy as writing linchpin ssh, hitting <TAB><TAB>
and selecting the system. The double tab works with linchpin auto-complete that can be enabled by running: eval
"$(_LINCHPIN_COMPLETE=source linchpin)"

The SSH command will look for the latest inventory generated by Linchpin for connection information.

$ linchpin ssh --help
Usage: linchpin ssh [OPTIONS] TARGET

Options:
-h, --help Show this message and exit.

1.2.4 Managing Resources

Resources in LinchPin generally consist of Virtual Machines, Containers, Networks, Security Groups, Instances, and
much more. Detailed below are examples of topologies, layouts, and PinFiles used to manage resources.

PinFiles

These PinFiles represent many combinations of complexity and providers.

PinFiles are processed top to bottom.

YAML

PinFiles written using YAML format:

• :docs1.5:`PinFile.dummy.yml <workspace/PinFile.dummy.yml>`

• :docs1.5:`PinFile.openstack.yml <workspace/PinFile.openstack.yml>`

• :docs1.5:`PinFile.complex.yml <workspace/PinFile.complex.yml>`

The combined format is only available in v1.5.0+

• :docs1.5:`PinFile.combined.yml <workspace/PinFile.combined.yml>`

60 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

JSON

New in version 1.5.0

PinFiles written using JSON format.

• :docs1.5:`PinFile.dummy.json <workspace/PinFile.dummy.json>`

• :docs1.5:`PinFile.aws.json <workspace/PinFile.aws.json>`

• :docs1.5:`PinFile.duffy.json <workspace/PinFile.duffy.json>`

• :docs1.5:`PinFile.combined.json <workspace/PinFile.combined.json>`

• :docs1.5:`PinFile.complex.json <workspace/PinFile.complex.json>`

Jinja2

New in version 1.5.0

These PinFiles are examples of what can be done with templating using Jinja2.

Beaker Template

This template would be processed with a dictionary containing a key named arches.

• :docs1.5:`PinFile.beaker.template <workspace/PinFile.beaker.template>`

$ linchpin -p PinFile.beaker.template \
--template-data '{ "arches": ["x86_64", "ppc64le", "s390x"]}' up

Libvirt Template and Data

This template and data can be processed together.

• :docs1.5:`PinFile.libvirt-mi.template <workspace/PinFile.libvirt-mi.template>`

• :docs1.5:`Data.libvirt-mi.yml <workspace/Data.libvirt-mi.yml>`

$ linchpin -vp PinFile.libvirt-mi.template \
--template-data Data.libvirt-mi.yml up

Scripts

New in version 1.5.0

Scripts that generate valid JSON output to STDOUT can be processed and used.

• :docs1.5:`generate_dummy.sh <workspace/scripts/generate_dummy.sh>`

$ linchpin -vp ./scripts/generate_dummy.sh up

1.2. Documentation 61

LinchPin Documentation, Release 2.0.0

Output PinFile

New in version 1.5.0

An output file can be created on an up/destroy action. Simply pass the --output-pinfile option with a path to a
writable file location.

$ linchpin --output-pinfile /tmp/Pinfile.out -vp ./scripts/generate_dummy.sh up
..snip..
$ cat /tmp/Pinfile.out
{

"dummy": {
"layout": {

"inventory_layout": {
"hosts": {

"example-node": {
"count": 3,
"host_groups": [

"example"
]

}
},
"vars": {

"hostname": "__IP__"
}

}
},
"topology": {

"topology_name": "dummy_cluster",
"resource_groups": [

{
"resource_group_name": "dummy",
"resource_definitions": [

{
"count": 3,
"type": "dummy_node",
"name": "web"

},
{

"count": 1,
"type": "dummy_node",
"name": "test"

}
],
"resource_group_type": "dummy"

}
]

}
}

}

62 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Topologies

These topologies represent many combinations of complexity and providers. Topologies process resource_definitions
top to bottom according to the file.

Topologies have evolved a little and have a slightly different format between versions. However, older versions still
work on v1.5.0+ (until otherwise noted).

The difference is quite minor, except in two providers, beaker and openshift.

Topology Format Pre v1.5.0

topology_name: "dummy_cluster" # topology name
resource_groups:
- resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

- name: "web"
type: "dummy_node" <-- this is called 'type`
count: 1

v1.5.0+ Topology Format

topology_name: "dummy_cluster" # topology name
resource_groups:
- resource_group_name: "dummy"
resource_group_type: "dummy"
resource_definitions:

- name: "web"
role: "dummy_node" <-- this is called 'role`
count: 1

The subtle difference is in the resource_definitions section. In the pre-v1.5.0 topology, the key was type, in v1.5.0+,
the key is role.

Note: Pay attention to the callout in the code blocks above.

For details about the differences in beaker and openshift, see ../topology_incompatibilities.

YAML

New in version 1.5.0

Topologies written using YAML format:

• :docs1.5:`os-server-new.yml <workspace/topologies/os-server-new.yml>`

• :docs1.5:`libvirt-new.yml <workspace/topologies/libvirt-new.yml>`

• :docs1.5:`bkr-new.yml <workspace/topologies/bkr-new.yml>`

Older topologies, supported in v1.5.0+

1.2. Documentation 63

LinchPin Documentation, Release 2.0.0

• :docs1.5:`os-server.yml <workspace/topologies/os-server.yml>`

• :docs1.5:`libvirt.yml <workspace/topologies/libvirt.yml>`

• :docs1.5:`bkr.yml <workspace/topologies/bkr.yml>`

JSON

New in version 1.5.0

Topologies can be written using JSON format.

• :docs1.5:`dummy.json <workspace/topologies/dummy.json>`

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Jenkins-Slave Template

This topology template would be processed with a dictionary containing one key named arch.

• :docs1.5:`jenkins-slave.j2 <workspace/topologies/jenkins-slave.j2>`

The PinFile.jenkins.yml contains the reference to the jenkins-slave topology.

jenkins-slave:
topology: jenkins-slave.yml
layout: jenkins-slave.yml

See also:

:docs1.5:`Pinfile.jenkins.j2 <workspace/PinFile.jenkins.j2>`

$ linchpin -p PinFile.jenkins --template-data '{ "arch": "x86_64" }' up

Layouts

Inventory Layouts (or just layout) describe what an Ansible inventory might look like after provisioning. A layout is
needed because information about the resources provisioned are unknown in advance.

Layouts, like topologies and PinFiles are processed top to bottom according to the file.

64 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

YAML

Layouts written using YAML format:

• :docs1.5:`aws-ec2.yml <workspace/layouts/aws-ec2.yml>`

• :docs1.5:`dummy-new.yml <workspace/layouts/dummy-new.yml>`

JSON

New in version 1.5.0

Layouts can be written using JSON format.

• :docs1.5:`gcloud.json <workspace/layouts/gcloud.json>`

Jinja2

New in version 1.5.0

Topologies can be processed as templates using Jinja2.

Dummy Template

This layout template would be processed with a dictionary containing one key named node_count.

• :docs1.5:`dummy.json <workspace/layouts/dummy.json>`

The PinFile.dummy.json contains the reference to the dummy.json layout.

{
"dummy": {

"topology": "dummy.json",
"layout": "dummy.json"

}
}

See also:

:docs1.5:`PinFile.dummy.json <workspace/PinFile.dummy.json>`

$ linchpin -p PinFile.dummy.json --template-data '{ "node_count": 2 }' up

Advanced layout examples can be found by reading ra_inventory_layouts.

See also:

Examples for all Providers

1.2. Documentation 65

LinchPin Documentation, Release 2.0.0

1.2.5 Examples for all Providers

LinchPin has many default providers. This choose-your-own-adventure page takes you through the basics to ensure
success for each.

OpenStack

The OpenStack provider manages multiple types of resources.

os_server

OpenStack instances can be provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/os-server-new.yml>`

• Ansible module

Note: Currently, the ansible module used is bundled with LinchPin. However, the variables used are identical to the
Ansible os_server module, except for adding a count option.

Topology Schema

Within Linchpin, the os_server resource_definition has more options than what is shown in the examples above. For
each os_server definition, the following options are available.

Parameter re-
quired

type ansible value comments

name true string name Name of the instance
flavor true string flavor Defines the compute, memory, and storage capacity of the

node
image true string image The disk image used to provision the server instances
region false string region
count false inte-

ger
count

keypair false string key_name Public key of an OpenSSH keypair to be used for access to
created servers

secu-
rity_groups

false string secu-
rity_groups

fip_pool false string float-
ing_ip_pools

networks false string networks
userdata false string userdata
volumes false list volumes
boot_from_volumefalse string boot_from_volume
termi-
nate_volume

false string termi-
nate_volume

volume_size false string volume_size
boot_volume false string boot_volume

66 Chapter 1. Why LinchPin?

http://docs.ansible.com/ansible/latest/os_server_module.html

LinchPin Documentation, Release 2.0.0

os_obj

OpenStack Object Storage can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/openstack/topologies/os-obj-new.yml>`

• Ansible module

os_vol

OpenStack Cinder Volumes can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/openstack/topologies/os-vol-new.yml>`

• Ansible module

os_sg

OpenStack Security Groups can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/openstack/topologies/os-sg-new.yml>`

• Ansible Security Group module

• Ansible Security Group Rule module

os_network

OpenStack networks can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/openstack/topologies/os-network.yml>`

• Ansible os_network module

os_router

OpenStack routers can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/openstack/topologies/os-router.yml>`

• Ansible os_router module

os_subnet

OpenStack subnets can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/openstack/topologies/os-subnet.yml>`

• Ansible os_subnet module

1.2. Documentation 67

http://docs.ansible.com/ansible/latest/os_object_module.html
http://docs.ansible.com/ansible/latest/os_volume_module.html
http://docs.ansible.com/ansible/latest/os_security_group_module.html
http://docs.ansible.com/ansible/latest/os_security_group_rule_module.html
https://docs.ansible.com/ansible/2.5/modules/os_network_module.html
https://docs.ansible.com/ansible/latest/modules/os_router_module.html
https://docs.ansible.com/ansible/latest/modules/os_subnet_module.html

LinchPin Documentation, Release 2.0.0

os_keypair

OpenStack keypairs can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/openstack/topologies/os-keypair.yml>`

• Ansible os_keypair module

Additional Dependencies

No additional dependencies are required for the OpenStack Provider.

Credentials Management

OpenStack provides several ways to provide credentials. LinchPin supports some of these methods for passing cre-
dentials for use with OpenStack resources.

LinchPin honors the OpenStack environment variables such as $OS_USERNAME, $OS_PROJECT_NAME, etc.

See the OpenStack documentation cli documentation for details.

Note: No credentials files are needed for this method. When LinchPin calls the OpenStack provider, the environment
variables are automatically picked up by the OpenStack Ansible modules, and passed to OpenStack for authentication.

OpenStack provides a simple file structure using a file called clouds.yaml, to provide authentication to a particular
tenant. A single clouds.yaml file might contain several entries.

clouds:
devstack:
auth:
auth_url: http://192.168.122.10:35357/
project_name: demo
username: demo
password: 0penstack

region_name: RegionOne
trystack:
auth:
auth_url: http://auth.trystack.com:8080/
project_name: trystack
username: herlo-trystack-3855e889
password: thepasswordissecrte

Using this mechanism requires that credentials data be passed into LinchPin.

An OpenStack topology can have a credentials section for each resource_group, which requires the filename,
and the profile name.

topology_name: topo
resource_groups:
- resource_group_name: openstack
resource_group_type: openstack
resource_definitions:

(continues on next page)

68 Chapter 1. Why LinchPin?

https://docs.ansible.com/ansible/latest/modules/os_keypair_module.html
https://docs.openstack.org/python-openstackclient/pike/cli/man/openstack.html#manpage
https://docs.openstack.org/os-client-config/latest/user/configuration.html

LinchPin Documentation, Release 2.0.0

(continued from previous page)

.. snip ..

credentials:
filename: clouds.yaml
profile: devstack

Provisioning with credentials uses the --creds-path option. Assuming the clouds.yaml file was placed in
~/.config/OpenStack, and the topology described above, a provisioning task could occur.

$ linchpin -v --creds-path ~/.config/openstack up

Note: The clouds.yaml could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="/path/to/credential_dir/"
$ linchpin -v up

Libvirt

The libvirt provider manages two types of resources.

libvirt_node

Libvirt Domains (or nodes) can be provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/libvirt-new.yml>`

• Ansible module

Topology Schema

Within Linchpin, the libvirt_node resource_definition has more options than what are shown in the examples above.
For each libvirt_node definition, the following options are available.

libvirt_network

Libvirt networks can be provisioned. If a libvirt_network is to be used with a libvirt_node, it must precede it.

• :docs1.5:`Topology Example <workspace/topologies/libvirt-el7net.yml>`

• Ansible module

1.2. Documentation 69

http://docs.ansible.com/ansible/latest/virt_module.html
http://docs.ansible.com/ansible/latest/virt_net_module.html

LinchPin Documentation, Release 2.0.0

Topology Schema

Within Linchpin, the libvirt_network resource_definition has more options than what are shown in the examples above.
For each libvirt_network definition, the following options are available.

Parameter req’d type where
used

default comments

role true string role
name true string module:

name
uri false string module:

name
qemu:///system

ip true string xml: ip
dhcp_start false string xml:

dhcp_start
dhcp_end false string xml:

dhcp_end
domain false string xml: do-

main
Automated DNS for guests

forward_mode false string xml: for-
ward

nat

forward_dev false string xml: for-
ward

bridge false string xml: bridge
delete_on_destroyfalse boolean N/A False If true, libvirt destroy will destroy and undefine

the network

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

Additional Dependencies

The libvirt resource group requires several additional dependencies. The following must be installed.

• libvirt-devel

• libguestfs-tools

• python-libguestfs

• libvirt-python

• python-lxml

For a Fedora 26 machine, the dependencies would be installed using dnf.

$ sudo dnf install libvirt-devel libguestfs-tools python-libguestfs
$ pip install linchpin[libvirt]

Additionally, because libvirt downloads images, certain SELinux libraries must exist.

• libselinux-python

For a Fedora 26 machine, the dependencies would be installed using dnf.

70 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

$ sudo dnf install libselinux-python

If using a python virtual environment, the selinux libraries must be symlinked. Assuming a virtualenv of ~/venv,
symlink the libraries.

$ export LIBSELINUX_PATH=/usr/lib64/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/selinux ~/venv/lib/python2.7/site-packages
$ ln -s ${LIBSELINUX_PATH}/_selinux.so ~/venv/lib/python2.7/site-packages

Copying Images

New in version 1.5.1

By default, LinchPin manages the libvirt images in a directory that is accessible only by the root user. However,
adjustments can be made to allow an unprivileged user to manage Libvirt via LinchPin. These settings can be modified
in the :docs1.5:`linchpin.conf <workspace/linchpin.conf>`

This configuration adjustment of linchpin.conf may work for the unprivileged user herlo.

[evars]
libvirt_image_path = ~/libvirt/images/
libvirt_user = herlo
libvirt_become = no

The directory will be created automatically by LinchPin. However, the user may need additional rights, like group
membership to access Libvirt. Please see https://libvirt.org for any additional configurations.

Credentials Management

Libvirt doesn’t require credentials via LinchPin. Multiple options are available for authenticating against a Libvirt
daemon (libvirtd). Most methods are detailed here. If desired, the uri for the resource can be set using one of these
mechanisms.

By default, however, libvirt requires sudo access to use. To allow users without sudo access to provision libvirt
instances, run the following commands on the target machine:

1. Create the libvirt group if it does not exist

$ getent group | grep libvirt
$ groupadd -g 7777 libvirt

2. Add user account to libvirt and qemu groups

$ usermod -aG libvirt,qemu <user>

3. Edit libvirtd configuration to add group

$ cat <<EOF >>/etc/libvirt/libvirtd.conf
unix_sock_group = "libvirt"
unix_sock_rw_perms = "0770"
EOF

4. Restart the libvirtd daemon

1.2. Documentation 71

https://libvirt.org
https://libvirt.org/auth.html

LinchPin Documentation, Release 2.0.0

$ systemctl restart libvirtd

The next time the user logs in, they will be able to provision libvirt disks without sudo access

Amazon Web Services

The Amazon Web Services (AWS) provider manages multiple types of resources.

aws_ec2

AWS Instances can be provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/aws-ec2-new.yml>`

• :docs1.5:`Topology Example w/ VPC <workspace/topologies/aws-ec2-vpc.yml>`

• aws_ec2 module

Topology Schema

Within Linchpin, the aws_ec2 resource_definition has more options than what are shown in the examples above. For
each aws_ec2 definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
name true string instance_tags name is set as an instance_tag value.
flavor true string instance_type
image true string image
region false string region
count false integer count
keypair false string key_name
security_group false string / list group
vpc_subnet_id false string vpc_subnet_id
assign_public_ip false boolean assign_public_ip

EC2 Inventory Generation

If an instance has a public IP attached, its hostname in public DNS, if available, will be provided in the generated
Ansible inventory file, and if not the public IP address will be provided.

For instances which have a private IP address for VPC usage, the private IP address will be provided since private EC2
DNS hostnames (e.g. ip-10-0-0-1.ec2.internal) will not typically be resolvable outside of AWS.

For instances with both a public and private IP address, the public address is always provided instead of the private
address, so as to avoid duplicate runs of Ansible on the same host via the generated inventory file.

72 Chapter 1. Why LinchPin?

http://docs.ansible.com/ansible/latest/ec2_module.html

LinchPin Documentation, Release 2.0.0

aws_ec2_key

AWS SSH keys can be added using this resource.

• :docs1.5:`Topology Example <workspace/topologies/aws-ec2-key-new.yml>`

• ec2_key module

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

aws_s3

AWS Simple Storage Service buckets can be provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/aws-s3-new.yml>`

• aws_s3 module

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

aws_sg

AWS Security Groups can be provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/aws-sg-new.yml>`

• ec2_group module <http://docs.ansible.com/ansible/latest/ec2_group_module.html>

Note: This resource will not be torn down during a destroy action. This is because other resources may depend on
the now existing resource.

aws_ec2_eip

AWS EC2 elastic ips can be provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/aws-ec2-eip.yml>`

• ec2_eip module <http://docs.ansible.com/ansible/latest/ec2_eip_module.html>

1.2. Documentation 73

http://docs.ansible.com/ansible/latest/ec2_key_module.html
http://docs.ansible.com/ansible/latest/aws_s3_module.html

LinchPin Documentation, Release 2.0.0

aws_ec2_vpc_net

AWS VPC networks can be provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/topologies/aws-ec2-vpc-net.yml>`

• `ec2_vpc_net module <https://docs.ansible.com/ansible/latest/modules/ec2_vpc_net_module.html

>`_

aws_ec2_vpc_internet_gateway

Manage AWS VPC INTERNET Gateways. * :docs1.5:`Topology Exam-
ple <workspace/topologies/aws-ec2-vpc-internet-gateway.yml>` * ec2_vpc_net module
<https://docs.ansible.com/ansible/latest/modules/ec2_vpc_igw_module.html>

aws_ec2_vpc_nat_gateway

Manage AWS VPC NAT Gateways.

• :docs1.5:`Topology Example <workspace/topologies/aws-ec2-vpc-nat-gateway.yml>`

• ec2_vpc_net module

aws_ec2_vpc_subnet

AWS VPC subnets can be provisioned using this resource. * :docs1.5:`Topology Example
<workspace/topologies/aws-ec2-vpc-subnet.yml>` * ec2_vpc_subnet module

aws_ec2_vpc_routetable

AWS VPC routetable can be provisioned using this resource. * :docs1.5:`Topology Example
<workspace/topologies/aws-ec2-vpc-routetable.yml>` * ec2_vpc_route_table module

aws_ec2_vpc_endpoint

AWS VPC endpoint can be provisioned using this resource. * :docs1.5:`Topology Example
<workspace/topologies/aws-ec2-vpc-endpoint.yml>` * ec2_vpc_endpoint module

aws_ec2_elb_lb

AWS EC2 elb lb load balancer can be provisioned using this resource. * :docs1.5:`Topology Example
<workspace/topologies/aws-ec2-elb-lb.yml>` * ec2_vpc_endpoint module

74 Chapter 1. Why LinchPin?

https://docs.ansible.com/ansible/latest/modules/ec2_vpc_net_module.html
http://docs.ansible.com/ansible/latest/ec2_vpc_nat_gateway_module.html
https://docs.ansible.com/ansible/latest/modules/ec2_vpc_subnet_module.html?highlight=ec2_vpc_subnet
https://docs.ansible.com/ansible/latest/modules/ec2_vpc_route_table_module.html#ec2-vpc-route-table-module
https://docs.ansible.com/ansible/latest/modules/ec2_vpc_endpoint_module.html
https://docs.ansible.com/ansible/latest/modules/ec2_elb_module.html

LinchPin Documentation, Release 2.0.0

Additional Dependencies

No additional dependencies are required for the AWS Provider.

Credentials Management

AWS provides several ways to provide credentials. LinchPin supports some of these methods for passing credentials
for use with AWS resources.

One method to provide AWS credentials that can be loaded by LinchPin is to use the INI format that the AWS CLI
tool uses.

Credentials File

An example credentials file may look like this for aws.

$ cat aws.key
[default]
aws_access_key_id=ARYA4IS3THE3NO7FACEB
aws_secret_access_key=0Hy3x899u93G3xXRkeZK444MITtfl668Bobbygls

[herlo_aws1_herlo]
aws_access_key_id=JON6SNOW8HAS7A3WOLF8
aws_secret_access_key=Te4cUl24FtBELL4blowSx9odd0eFp2Aq30+7tHx9

See also:

Examples for all Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first is which credentials to use. The second is
where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are described by specifying the file, then the profile.
As shown above, the filename is ‘aws.key’. The user could pick either profile in that file.

topology_name: ec2-new
resource_groups:
- resource_group_name: "aws"
resource_group_type: "aws"
resource_definitions:

- name: demo-day
flavor: m1.small
role: aws_ec2
region: us-east-1
image: ami-984189e2
count: 1

credentials:
filename: aws.key
profile: default

The important part in the above topology is the credentials section. Adding credentials like this will look up, and use
the credentials provided.

1.2. Documentation 75

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

LinchPin Documentation, Release 2.0.0

Credentials Location

By default, credential files are stored in the default_credentials_path, which is ~/.config/linchpin.

Hint: The default_credentials_path value uses the interpolated :dirs1.5:`default_config_path
<workspace/linchpin.conf#L22>` value, and can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up aws-ec2-new

Note: The aws.key file could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up aws-ec2-new

Environment Variables

LinchPin honors the AWS environment variables

Provisioning

Provisioning with credentials uses the --creds-path option.

$ linchpin -v --creds-path ~/.config/aws up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/aws"
$ linchpin -v up

Azure

The Azure provider manages multiple types of resources.

Note: The dependencies is perfectly working for the latest version of Ansible, if you are not using the latest version,
may not work.

76 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

azure_vm

Azure VM Instances can be provisioned using this resource.

• Example

• azure_vm module

Topology Schema

Within Linchpin, the azure_vm resource_definition has more options than what are shown in the examples above. For
each azure_vm definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
vm_name true string name It can’t include ‘_’ and other special char
private_image false string image This takes private images
virtual_network_name false string virtual_network_name
vm_username false string image
vm_password false string image
count false int
resource_group true string resource_group
vm_size false string vm_size
public_image false dict image This para takes public images
vm_username false string admin_username
vm_password false string admin_password
public_key false string Copy you key here
delete_all_attached false string remove_on_absent
availability_set false string availability_set

azure_nsg

Azure Network Security Group can be provisioned using this resource.

• Example <workspaces/azure/Pinfile>`

• azure_nsg module <https://docs.ansible.com/ansible/latest/modules/azure_rm_securitygroup_module.html?
highlight=azure%20security#examples>`_

Topology Schema

Within Linchpin, the azure_vm resource_definition has more options than what are shown in the examples above. For
each azure_vm definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
name true string name
purge_rules false string purge_rules
rules false list(dict) | rules

• If you declare both public and private image, only the private will be taken

1.2. Documentation 77

https://docs.ansible.com/ansible/latest/modules/azure_rm_virtualmachine_module.html
https://docs.ansible.com/ansible/latest/modules/azure_rm_securitygroup_module.html?highlight=azure%20security#examples
https://docs.ansible.com/ansible/latest/modules/azure_rm_securitygroup_module.html?highlight=azure%20security#examples

LinchPin Documentation, Release 2.0.0

azure_api

Any Azure resources can be provisioned using this role, it supported by the Azure Api

• Example

• azure_api module

• Azure API

Topology Schema

Within Linchpin, the azure_api resource_definition has more options than what is shown in the examples above. For
each azure_api definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group true String resource_group
resource_type true String resource_type
resource_name true string resource_name
api_version true string api_version
body_path true string Path to request body
url true string url

azure_loadbalancer

With this role you can provision and configure the Azure Load Balancer

• Example <workspaces/azure/Pinfile>`

• azure_loadbalancer module <https://docs.ansible.com/ansible/latest/modules/azure_rm_loadbalancer_module.
html?highlight=azure%20load%20balance>`_

Topology Schema

Within Linchpin, the azure_loadbalancer resource_definition has more options than what is shown in the examples
above. For each azure_loadbalancer definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group false string resource_group
name true string name
frontend_ip_configuration false string frontend_ip_configuration
backend_address_pools false string backend_address_pools
probes false string probes
inbound_nat_pools false string inbound_nat_pools
inbound_nat_rules false string inbound_nat_rules
load_balacing_rules false string load_balacing_rules

78 Chapter 1. Why LinchPin?

https://docs.ansible.com/ansible/latest/modules/azure_rm_resource_module.html#azure-rm-resource-module
https://docs.microsoft.com/en-us/rest/api/?view=Azure
https://docs.ansible.com/ansible/latest/modules/azure_rm_loadbalancer_module.html?highlight=azure%20load%20balance
https://docs.ansible.com/ansible/latest/modules/azure_rm_loadbalancer_module.html?highlight=azure%20load%20balance

LinchPin Documentation, Release 2.0.0

azure_publicipaddress

With this role, you can provision and manage Azure public ip address

• Example <workspaces/azure/Pinfile>`

• azure_publicipaddress module <https://docs.ansible.com/ansible/latest/modules/azure_rm_publicipaddress_
module.html?highlight=azure%20public%20address>`_

Topology Schema

Within Linchpin, the azure_publicipaddress resource_definition has more options than what is shown in the examples
above. For each azure_publicipaddress definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group false string resource_group
allocation_method true string allocation_method
domain_name false string domain_name
sku false string sku

azure_availabilityset

Any Azure resources can be provisioned using this role, it supported by the Azure Api

• Example <workspaces/azure/Pinfile>`

• azure_availabilityset module <https://docs.ansible.com/ansible/latest/modules/azure_rm_availabilityset_
module.html?highlight=azure%20avail>`_

Topology Schema

Within Linchpin, the azure_availabilityset resource_definition has more options than what is shown in the examples
above. For each azure_availabilityset definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group false string resource_group
name true string name
location false string name
platform_update_domain_count false string platform_update_domain_count
platform_fault_domain_count false string platform_fault_domain_count
sku false string sku

1.2. Documentation 79

https://docs.ansible.com/ansible/latest/modules/azure_rm_publicipaddress_module.html?highlight=azure%20public%20address
https://docs.ansible.com/ansible/latest/modules/azure_rm_publicipaddress_module.html?highlight=azure%20public%20address
https://docs.ansible.com/ansible/latest/modules/azure_rm_availabilityset_module.html?highlight=azure%20avail
https://docs.ansible.com/ansible/latest/modules/azure_rm_availabilityset_module.html?highlight=azure%20avail

LinchPin Documentation, Release 2.0.0

azure_network_interface

Azure network interface can be provisioned using this role

• Example <workspaces/azure/Pinfile>`

• azure_rm_networkinterface module <https://docs.ansible.com/ansible/latest/modules/azure_rm_
networkinterface_module.html?highlight=azure%20network%20interface>`_

Topology Schema

Within Linchpin, the azure_rm_networkinterface resource_definition has more options than what is shown in the
examples above. For each azure_rm_networkinterface definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group false string resource_group
name true string name
virtual_network_name false string virtual_network
subnet_name false string platform_update_domain_count

azure_resource_group

Azure network interface can be provisioned using this role

• Example <workspaces/azure/Pinfile>`

• azure_rm_resourcegroup module <https://docs.ansible.com/ansible/latest/modules/azure_rm_resourcegroup_
module.html?highlight=azure%20resource%20group>`_

Topology Schema

Within Linchpin, the azure_rm_networkinterface resource_definition has more options than what is shown in the
examples above. For each azure_rm_networkinterface definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group false string resource_group
name true string name
location false string location

80 Chapter 1. Why LinchPin?

https://docs.ansible.com/ansible/latest/modules/azure_rm_networkinterface_module.html?highlight=azure%20network%20interface
https://docs.ansible.com/ansible/latest/modules/azure_rm_networkinterface_module.html?highlight=azure%20network%20interface
https://docs.ansible.com/ansible/latest/modules/azure_rm_resourcegroup_module.html?highlight=azure%20resource%20group
https://docs.ansible.com/ansible/latest/modules/azure_rm_resourcegroup_module.html?highlight=azure%20resource%20group

LinchPin Documentation, Release 2.0.0

azure_virtual_network

Azure virtual network can be provisioned using this role

• Example <workspaces/azure/Pinfile>`

• azure_rm_virtualnetwork module <https://docs.ansible.com/ansible/latest/modules/azure_rm_virtualnetwork_
module.html?highlight=azure%20virtual%20network>`_

Topology Schema

Within Linchpin, the azure_rm_virtualnetwork resource_definition has more options than what is shown in the exam-
ples above. For each azure_rm_virtualnetwork definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group false string resource_group
name true string name
address_prefixes false string address_prefixes

azure_virtual_subnet

Azure network interface can be provisioned using this role

• Example <workspaces/azure/Pinfile>`

• azure_rm_subnet module <https://docs.ansible.com/ansible/latest/modules/azure_rm_subnet_module.html?
highlight=azure%20subnet>`_

Topology Schema

Within Linchpin, the azure_rm_subnet resource_definition has more options than what is shown in the examples above.
For each azure_rm_subnet definition, the following options are available.

Parameter required type ansible value comments
role true string N/A
resource_group false string resource_group
name true string name
virtual_network_name false string virtual_network_name
address_prefix false string address_prefix

1.2. Documentation 81

https://docs.ansible.com/ansible/latest/modules/azure_rm_virtualnetwork_module.html?highlight=azure%20virtual%20network
https://docs.ansible.com/ansible/latest/modules/azure_rm_virtualnetwork_module.html?highlight=azure%20virtual%20network
https://docs.ansible.com/ansible/latest/modules/azure_rm_subnet_module.html?highlight=azure%20subnet
https://docs.ansible.com/ansible/latest/modules/azure_rm_subnet_module.html?highlight=azure%20subnet

LinchPin Documentation, Release 2.0.0

Credentials Management

Linchpin supports Ansible authentication options:

• Active Directory

• Service Principal

Active Directory

Active Directory authentication works only with organization users (not guests). You can create a new user in the
organization but do not invite users. The following keys are required in the credentials file for AD authentication:

user The user name, you can verify it manually in Azure portal.

password The password, you can verify it manually in Azure portal and change it.

subscription_id The subscription id to use, you can check what subscriptions available and what permission you have
in Azure portal.

tenant Is the Active Directory ID, and it is required if the user is member of multiple directories. You can find tenant
ID in Azure portal at Azure Active Directory

Example of credentials file with Azure Active directory:

[default]
user: linchpin@redhat.com
password: MySecretPassword
subscription_id: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
tenant: 3rfawca-awd3daw-d3cc33-ASCEA-CAEESA-caceace

Service Principal

The following keys are required in the credentials file for SP authentication:

client_id The client ID is the application ID.

secret The application secret token, can be generated in Azure portal

subscription_id The subscription id to use, you can check what subscriptions available and what permission you have
in Azure portal.

tenant Is the Active Directory ID, and it is required if the user is member of multiple directories. You can find tenant
ID in Azure portal at Azure Active Directory

Example of credentials file with Azure Service Principal:

[default]
client_id: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
secret: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
subscription_id: 2q3d2d-ad3adw-adwa3d-dwade-awedawee
tenant: 3rfawca-awd3daw-d3cc33-ASCEA-CAEESA-caceace

82 Chapter 1. Why LinchPin?

https://docs.ansible.com/ansible/latest/scenario_guides/guide_azure.html#authenticating-with-azure
https://portal.azure.com/
https://portal.azure.com/
https://account.activedirectory.windowsazure.com/ChangePassword.aspx
https://portal.azure.com/#blade/Microsoft_Azure_Billing/SubscriptionsBlade
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview
https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_Azure_Billing/SubscriptionsBlade
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview

LinchPin Documentation, Release 2.0.0

How to create new Service Principal in Azure portal

1. Go to Azure Active Directory in Azure portal

2. Go to App registration on the left bar

3. Create a new app

4. The Application ID is client_id

5. The Directory ID is tenant

6. Go to Certificates and secrets on left bar

7. Upload or create a new key, that is the secret

8. Go to the Access Control of you resource group or subscription

9. Click on Add button to add new role assignment

10. Assign the role of Contributor to the application you just created

11. Go to Subscription to find out its ID for subscription id

How to create new Service Principal using Azure command line client

accountname@Azure:~$ az ad sp create-for-rbac --name ServicePrincipalName
Changing "ServicePrincipalName" to a valid URI of "http://ServicePrincipalName",
→˓which is the required format used for service principal names
Creating a role assignment under the scope of "/subscriptions/dcc74c29-4db6-4c49-9a0f-
→˓ac0ee03fa17e"
Retrying role assignment creation: 1/36
Retrying role assignment creation: 2/36
Retrying role assignment creation: 3/36
Retrying role assignment creation: 4/36

{
"appId": "xxxxxxxxxxxxxxxxxxxxxxxxxx",
"displayName": "ServicePrincipalName",
"name": "http://ServicePrincipalName",
"password": "xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxx",
"tenant": "xxxxx-xxxxx-xxxx-xxxx-xxxxxxxxxxxx"

}

Google Cloud Platform

The Google Cloud Platform (gcloud) provider manages one resource, gcloud_gce.

1.2. Documentation 83

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/Overview
https://portal.azure.com/

LinchPin Documentation, Release 2.0.0

gcloud_gce

Google Compute Engine (gce) instances are provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/topologies/gce-new.yml>`

• Ansible module

gcloud_gce_eip

Google Compute enginer external IP (gce_eip) are provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/topologies/gce-eip.yml>`

• Ansible module <http://docs.ansible.com/ansible/latest/gce_eip_module.html>

gcloud_gce_net

Google compute engine network (gce_net) are provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/topologies/gce-net.yml>`

• Ansible module <http://docs.ansible.com/ansible/latest/gce_net_module.html>

gcloud_gcdns_zone

Google DNS zone (gcdns_zone) are provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/topologies/gcdns-zone.yml>`

• Ansible module <https://docs.ansible.com/ansible/latest/modules/gcdns_zone_module.html>

gcloud_gcdns_record

Google DNS zone records (gcdns_record) are provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/topologies/gcdns-record.yml>`

• Ansible module <https://docs.ansible.com/ansible/latest/modules/gcdns_record_module.html>

gcloud_gcp_compute_network

Google cloud compute networks are provisioned using this resource.

• :docs1.5:`Topology Example <workspaces/topologies/gcp-compute-network.yml>`

• Ansible module <https://docs.ansible.com/ansible/latest/modules/gcp_compute_network_module.html>

84 Chapter 1. Why LinchPin?

http://docs.ansible.com/ansible/latest/gce_module.html

LinchPin Documentation, Release 2.0.0

gcloud_gcp_compute_router

Google cloud compute routers are provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/gcp-compute-router.yml>`

• Ansible module <https://docs.ansible.com/ansible/latest/modules/gcp_compute_router_module.html>

Additional Dependencies

No additional dependencies are required for the Google Cloud (gcloud) Provider.

Credentials Management

Google Compute Engine provides several ways to provide credentials. LinchPin supports some of these methods for
passing credentials for use with openstack resources.

Google Cloud Key File

GCloud allows for the creation of keyfiles for authentication. A keyfile will look something like this:

{
"type": "service_account",
"project_id": "[PROJECT-ID]",
"private_key_id": "[KEY-ID]",
"private_key": "-----BEGIN PRIVATE KEY-----\n[PRIVATE-KEY]\n-----END PRIVATE KEY----

→˓-\n",
"client_email": "[SERVICE-ACCOUNT-EMAIL]",
"client_id": "[CLIENT-ID]",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://accounts.google.com/o/oauth2/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/[SERVICE-

→˓ACCOUNT-EMAIL]"
}

To learn how to generate key files, see the google cloud documentation <https://cloud.google.com/iam/docs/creating-
managing-service-account-keys>.

This mechanism requires that credentials data be passed into LinchPin. A GCloud topology can have a
credentials section for each resource_group, which requires the filename and the profile name. By default,
LinchPin searches for the filename in {{ workspace }}/credentials but can be made to search other places by set-
ting the evars.default_credentials_path variable in your linchpin.conf. The credentials path can also be
overridden by using the --creds-path flag.

topology_name: mytopo
resource_groups:

- resource_group_name: gce
- resource_group_type: gcloud
resource_definitions:

.. snip ..

(continues on next page)

1.2. Documentation 85

LinchPin Documentation, Release 2.0.0

(continued from previous page)

credentials:
filename: gcloud.key

Environment Variables

LinchPin honors the gcloud environment variables.

Configuration Files

Google Cloud Platform provides tooling for authentication. See https://cloud.google.com/appengine/docs/standard/
python/oauth/ for options.

VMware

The VMware provider manages a single resource, vmware_guest.

vmware_guest

VMware VMs can be provisioned using this resource

• docs1.7 Topology Example <workspace/topologies/vmware.yml>

• Ansible module https://docs.ansible.com/ansible/latest/modules/vmware_guest_module.html

Topology Schema

Within Linchpin, the vmware_guest supports all the Ansible module options with the same schema structure. All the
limitation of the module apply too.

Additional Dependencies

The vmware resources group requires additional dependency, the following must be installed:

• PyVmomi

$ pip install linchpin[vmware]

Credentials Management

Environment Variables

Linchpin honors the following environment variables:

86 Chapter 1. Why LinchPin?

https://cloud.google.com/appengine/docs/standard/python/oauth/
https://cloud.google.com/appengine/docs/standard/python/oauth/

LinchPin Documentation, Release 2.0.0

Environment variable Credentials vari-
able

Description

VMWARE_PASSWORD password The password of the vSphere vCenter or ESXi server
VMWARE_USER username The username of the vSphere vCenter or ESXi server.
VMWARE_HOST hostname The hostname or IP address of the vSphere vCenter or ESXi

server.
VMWARE_PORT port The port number of the vSphere vCenter or ESXi server.
VMWARE_VALIDATE_CERTSvalidate_certs Allows connection when SSL certificates are not valid.

Credentials File

An example credentials file may look like this for vmware.

$ cat vmware.key
[default]
username=root
password=VMware1!
hostname=192.168.122.125
validate_certs=false

See also:

Examples for all Providers for provider-specific credentials examples.

To use these credentials, the user must tell LinchPin two things. The first is which credentials to use. The second is
where to find the credentials data.

Using Credentials

In the topology, a user can specific credentials. The credentials are described by specifying the file, then the profile.
As shown above, the filename is ‘vmware.key’. The user could pick either profile in that file.

topology_name: vmware-new
resource_groups:
- resource_group_name: vmware-new
resource_group_type: vmware
resource_definitions:

- role: vmware_guest
name: vmware-node
cdrom:
type: iso
iso_path: "[ha-datacenter] tc_vmware4.iso"

folder: /
datastore: ha-datacenter
disk:
- size_mb: 10

type: thin
hardware:
num_cpus: 1
memory_mb: 256

networks:
- name: VM Network

wait_for_ip_address: yes

(continues on next page)

1.2. Documentation 87

LinchPin Documentation, Release 2.0.0

(continued from previous page)

credentials:
filename: vmware.key
profile: default

The important part in the above topology is the credentials section. Adding credentials like this will look up, and use
the credentials provided.

Credentials Location

By default, credential files are stored in the default_credentials_path, which is ~/.config/linchpin.

Hint: The default_credentials_path value uses the interpolated :dirs1.5:`default_config_path
<workspace/linchpin.conf#L22>` value, and can be overridden in the :docs1.5:`linchpin.conf`.

The credentials path (or creds_path) can be overridden in two ways.

It can be passed in when running the linchpin command.

$ linchpin -vvv --creds-path /dir/to/creds up vmware-new

Note: The vmware.key file could be placed in the default_credentials_path. In that case passing --creds-path
would be redundant.

Or it can be set as an environment variable.

$ export CREDS_PATH=/dir/to/creds
$ linchpin -v up vmware-new

Beaker

The Beaker (bkr) provider manages a single resource, bkr_server.

bkr_server

Beaker instances are provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/bkr-new.yml>`

The ansible modules for beaker are written and bundled as part of LinchPin.

• :code1.5:`bkr_server.py <linchpin/provision/library/bkr_server.py>`

• :code1.5:`bkr_info.py <linchpin/provision/library/bkr_info.py>`

88 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Topology Schema

Within Linchpin, the bkr_server resource_definition has more options than what are shown in the examples above. For
each bkr_server role definition, the following options are available.

Parameter required type ansible value default
role true string N/A
whiteboard false string whiteboard Provisioned by LinchPin
job_group false string job_group
cancel_message false string cancel_message
max_attempts false string max_attempts
attempt_wait_time false integer attempt_wait_time
ssh_keys_path false string ssh_keys_path Credentials directory
recipesets false string recipesets see table below

recipesets

Because recipesets is how beaker requests systems, it’s a large part of what the topology schema includes. There are
several ways to request systems. This table describes the available recipesets options.

Parameter required type sub-field layout options
distro false string N/A
family false string N/A
tags false list list of strings
name false string N/A
ks_meta false string N/A
kernel_options false string N/A
kernel_options_post false string N/A
arch false string N/A
variant false string N/A
bkr_data false string N/A
method false string N/A
count false string N/A
ids false list N/A
taskparam false list list of strings
keyvalue false list list of strings
hostrequires false list param | required | type

tag true string
op false string
value false int / string
type false string

dict force false string
dict rawxml | false | string

reserve_duration false int N/A
repos false list dict baseurl
install false list list of strings
ks_append false list list of strings
ssh_key false list list of strings
ssh_key_file false list list of file names
kickstart false string absolute path to a kickstart template

continues on next page

1.2. Documentation 89

LinchPin Documentation, Release 2.0.0

Table 1 – continued from previous page
Parameter required type sub-field layout options
partitions false list param | required | type

name | true | string size | true | integer fs | false | string type | false | string

Additional Dependencies

The beaker resource group requires several additional dependencies. The following must be installed.

• beaker-client>=23.3

It is also recommended to install the python bindings for kerberos.

• python-krbV

For a Fedora 26 machine, the dependencies could be installed using dnf.

$ sudo dnf install python-krbV
$ wget https://beaker-project.org/yum/beaker-server-Fedora.repo
$ sudo mv beaker-server-Fedora.repo /etc/yum.repos.d/
$ sudo dnf install beaker-client

Alternatively, with pip, possibly within a virtual environment.

$ pip install linchpin[beaker]

Credentials Management

Beaker provides several ways to authenticate. LinchPin supports these methods.

• Kerberos

• OAuth2

Note: LinchPin doesn’t support the username/password authentication mechanism. It’s also not recommended by the
Beaker Project, except for initial setup.

Duffy

Duffy is a tool for managing pre-provisioned systems in CentOS’ CI environment. The Duffy provider manages a
single resource, duffy_node.

duffy_node

The duffy_node resource provides the ability to provision using the duffy api.

• :docs1.5:`Topology Example <workspace/topologies/duffy-new.yml>`

The ansible module for duffy exists in its own repository.

90 Chapter 1. Why LinchPin?

https://wiki.centos.org/QaWiki/CI/Duffy
https://github.com/CentOS-PaaS-SIG/duffy-ansible-module

LinchPin Documentation, Release 2.0.0

Using Duffy

Duffy can only be run within the CentOS CI environment. To get access, follow this guide. Once access is granted,
the duffy ansible module can be used.

Additional Dependencies

Duffy doesn’t require any additional dependencies, but does need to be included in the Ansible library path to work
properly. See the ansible documentation for help addding a library path.

Credentials Management

Duffy uses a single file, generally found in the user’s home directory, to provide credentials. It contains a single line,
which has the API key which is passed to duffy via the API.

For LinchPin to provision, duffy.key must exist.

A duffy topology can have a credentials section for each resource_group, which requires a filename.

topology_name: topo
resource_groups:
- resource_group_name: duffy
resource_group_type: duffy
resource_definitions:

.. snip ..

credentials: duffy.key

By default, the location searched for the duffy.key is the user’s home directory, as stated above. However, the cre-
dentials path can be set using --creds-path option. Assuming the duffy.key file was placed in ~/.config/
duffy, using the topology described above, a provisioning task could occur.

$ linchpin -v --creds-path ~/.config/duffy up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/duffy"
$ linchpin -v up

oVirt

The ovirt provider manages a single resource, ovirt_vms.

1.2. Documentation 91

https://wiki.centos.org/QaWiki/CI/GettingStarted
http://docs.ansible.com/ansible/latest/intro_configuration.html#library

LinchPin Documentation, Release 2.0.0

ovirt_vms

oVirt Domains/VMs can be provisioned using this resource.

• :docs1.5:`Topology Example <workspace/topologies/ovirt-new.yml>`

• Ansible module

Additional Dependencies

There are no known additional dependencies for using the oVirt provider for LinchPin.

Credentials Management

An oVirt topology can have a credentials section for each resource_group, which requires the filename, and the
profile name.

Consider the following file, named ovirt_creds.yml.

clouds:
ge2:
auth:
ovirt_url: http://192.168.122.10/
ovirt_username: demo
ovirt_password: demo

An oVirt topology can have a credentials section for each resource_group, which requires the filename and profile
name.

topology_name: topo
resource_groups:
- resource_group_name: ovirt
resource_group_type: ovirt
resource_definitions:

.. snip ..

credentials:
filename: ovirt_creds.yml
profile: ge2

Provisioning

Provisioning with credentials uses the --creds-path option. Assuming the credentials file was placed in ~/.
config/ovirt, and the topology described above, a provision task could occur.

$ linchpin -v --creds-path ~/.config/ovirt up

Alternatively, the credentials path can be set as an environment variable,

$ export CREDS_PATH="~/.config/ovirt"
$ linchpin -v up

92 Chapter 1. Why LinchPin?

http://docs.ansible.com/ansible/latest/ovirt_module.html

LinchPin Documentation, Release 2.0.0

Docker

The docker provider manages docker_container and docker_image resources.

• :docs1.5:`Topology Example <workspaces/docker/topologies/docker-new.yml>`

docker_container

The docker_container resource provides the ability to provision a Docker con-
tainer. It is implemented as a wrapper around the Ansible’s docker_container
<https://docs.ansible.com/ansible/latest/modules/docker_container_module.html> module so that same require-
ments, parameters, and behavior are expected.

Topology Schema

Within Linchpin, the docker_container resource_definition has more options than what are shown in the examples
above. For each docker_container definition, the same options of the Ansible docker_container module are available.
The :term: name :term: option is required.

See the docker_container parameters <https://docs.ansible.com/ansible/latest/modules/docker_container_module.html#parameters>
for the complete list and defaults.

docker_image

The docker_image resource provides the ability to manage a Docker image. It is implemented as a wrapper around
the Ansible’s docker_image <https://docs.ansible.com/ansible/latest/modules/docker_image_module.html> module
so that same requirements, parameters, and behavior are expected.

Topology Schema

Within Linchpin, the docker_image resource_definition has more options than what are shown in the examples above.
For each docker_image definition, the same options of the Ansible docker_image module are available. The :term:
name :term: option is required.

See the docker_image parameters <https://docs.ansible.com/ansible/latest/modules/docker_image_module.html#parameters>
for the complete list and defaults.

Note: The provider assume that the cacert_path, cert_path, path, and load_path parameter value are
relative to the workspace path, unless its value is absolute (e.g. /path/to/cert) or relative (e.g. ./path/to/cert) to the OS
filesystem.

1.2. Documentation 93

LinchPin Documentation, Release 2.0.0

Additional Dependencies

The docker resource group requires the same dependencies of the Ansible docker_container module. See the
docker_container requirements <https://docs.ansible.com/ansible/latest/modules/docker_container_module.html#requirements>
documentation for the complete list of dependencies and any further detail.

Openshift

The openshift provider manages two resources, openshift_inline, and openshift_external. However,
both of the resource types are managed by module k8s Ansible module. Usage of either one will result in redirection
to k8s module with different parameters.

Prior to linchpin 1.6.5, The Ansible module for openshift is written and bundled as part of LinchPin. *
:code1.5:`openshift.py <linchpin/provision/library/openshift.py>`

After 1.6.5 bundled ansible module is being replaced by upstream ansible kubernetes module. Refer: K8s module.
Linchpin supports all the attributes mentioned in k8s module.

openshift_inline

Openshift instances can be provisioned using this resource. Resources are detail inline. * :docs1.5:`Topology Exam-
ple <workspace/topologies/openshift-new.yml>`

Example PinFile:

openshift_external

Openshift instances can be provisioned using this resource. Resources are detail in an external file.

Example PinFile:

Topology Schema:

openshift_inline and opeshift_external resource definitions in linchpin follow the schema identical to ansible k8s
module. The following parameters are allowed in a linchpin topology:

Additional Dependencies

There are no known additional dependencies for using the openshift provider for LinchPin. Since openshift client
dependecy is included as part of linchpin’s core requirements.

94 Chapter 1. Why LinchPin?

https://docs.ansible.com/ansible/2.6/modules/k8s_module.html

LinchPin Documentation, Release 2.0.0

Credentials Management

An openshift topology can have a credentials section for each resource_group, which requires the api_endpoint,
and the api_token values. Openshift honors –creds-path in linchpin. The credential file passed needs to be formatted
as follows. Further, it also honors all the evironment variables that are supported by ansible k8s module. Refer: K8s
module. Linchpin defaults to environment variables if the credentials section is ommited or the –creds-path does not
contain the openshift credential file.

default:
api_endpoint: https://192.168.42.115:8443
api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190

optional parameters
api_version: v1 # defaults to version 1
cert_file: /path/to/cert_file
context: contextname
key_file: /path/to/key_file
kube_config: /path/to/kube_config
ssl_ca_cert: /path/to/ssl_ca_cert
username: username # not needed when api_token is used
password: ******** # not needed when api_token is used
verify_ssl: no #defaults to no. Needs to be set to yes when ssl_ca_cert is used

test:
api_endpoint: https://192.168.42.115:8443
api_token: 4_6A86rcZqdVBIbPwJQnsz33mO35O_PnSH2okk8_190

topology_name: topo
resource_groups:
- resource_group_name: openshift
resource_group_type: openshift
resource_definitions:

- name: openshift
role: openshift_inline
definition:

.. snip ..

credentials:
filename: name_of_credsfile.yaml # fetched from --creds-path is provided
profile: name_of_profile # defaults to 'default' profile in cred_file

Tid bits :

How to get to know API_ENDPOINT and API_TOKEN:

Once the openshift cluster is up and running try logging into openshift using the following command

oc login

After login run following command to get the API_ENDPOINT:

oc version | grep Server | awk '{print $2}'

1.2. Documentation 95

https://docs.ansible.com/ansible/2.6/modules/k8s_module.html
https://docs.ansible.com/ansible/2.6/modules/k8s_module.html

LinchPin Documentation, Release 2.0.0

Run the following command to get API_TOKEN

oc whomai -t

Make sure your openshift user has permissions to create resources:

Openshift by default imposes many restrictions on users when it comes to creation . One can always manage roles
to get appropriate roles. if its just a development environment please use following command to give admin user
privileges to user .. code-block:

oc adm policy add-cluster-role-to-user cluster-admin <username> --as=system:admin

Refer: Openshift role management.

1.2.6 Advanced Topics

Provisioning in LinchPin is a fairly simple process. However, LinchPin also provides some very flexible and powerful
features. These features can sometimes be complex, which means most users will likely not use them. Those features
are covered here.

Inventory Layouts

When generating an inventory, LinchPin provides some very flexible options. From the simple Layouts to much more
complex options, detailed here.

inventory_file

New in version 1.5.2

When an layout is provided in the PinFile, LinchPin automatically generates a static inventory for Ansible. The
inventory filename is dynamically generated based upon the name of the target and the uhash. However, the value can
be overridden simply by adding the inventory_file option. The uhash can be disabled for all targets by setting
the enable_uhash flag to False in linchpin.conf or for a subset of targets by using the --disable-uhash
flag when running linchpin up and providing a comma-separated list of targets

inventory_layout:

inventory_file: /path/to/dummy.inventory
vars:
.. snip ..

Using LinchPin or Ansible variables

New in version 1.5.2

It’s likely that the inventory file is based upon specific Linchpin (or Ansible) variables. In this case, the values need to
be wrapped as raw values. This allows LinchPin to read the string in unparsed and pass it to the Ansible parser.

inventory_layout:
inventory_file: "{% raw -%}{{ workspace }}/inventories/dummy-new-{{ uhash }}.

→˓inventory{%- endraw %}"

96 Chapter 1. Why LinchPin?

https://docs.openshift.com/container-platform/3.3/admin_solutions/user_role_mgmt.html

LinchPin Documentation, Release 2.0.0

Using Environment variables

Additionally, using environment variables requires the raw values.

host_groups:
all:
vars:

ansible_user: root
ansible_private_key_file: |

"{% raw -%}{{ lookup('env', 'TESTLP') | default('/tmp', true) }}/CSS/
→˓keystore/css-central{%- endraw %}"

The RunDB Explained

Attention: Much of the information below began in v1.2.0 and later. However, much of the data did not exist
until later on, generally in version 1.5.0 or later. Some cases, where noted, the data is only planned, and does not
yet exist.

The RunDB is the central database which stores transactions and target-based runs each time any LinchPin action is
performed. The RunDB stores detailed data, including inputs like topology, inventory layout, hooks; and outputs like
resource return data, ansible inventory filename and data, etc.

RunDB Storage

The RunDB is stored using a JSON format by default. TinyDB currently provides the backend. It is a NOSQL
database, which writes out transactional records to a single file. Other databases could provide a backend, as long as a
driver is written and included.

TinyDB is included in a class called TinyRunDB. TinyRunDB is an implementation of a parent class, called BaseDB,
which in turn is a subclass of the abstract RunDB class.

Records are the main way for items to be stored in the RunDB. There are two types of records stored in the RunDB,
target, and transaction.

Transaction Records

Each time any action (eg. linchpin up) occurs using linchpin, a transaction record is stored. The transaction
records are stored in the ‘linchpin’ table. The main constraint to this is that a target called linchpin cannot be used.

Transaction Records consist of a Transaction ID (tx_id), the action and a target information for each target acted upon
during the specified transaction. A single record could have multiple targets listed.

"136": {
"action": "up",
"targets": [

{
"dummy-new": {

"290": {
"rc": 0,
"uhash": "27e1"

}

(continues on next page)

1.2. Documentation 97

http://tinydb.readthedocs.io/en/latest/
https://github.com/CentOS-PaaS-SIG/linchpin/blob/develop/linchpin/rundb/tinyrundb.py

LinchPin Documentation, Release 2.0.0

(continued from previous page)

},
"libvirt-new": {

"225": {
"rc": 0,
"uhash": "d88c"

}
}

}
]

},

In every case, the target data included is the name, run-id, return code (rc), and uhash. The linchpin journal
provides a transaction view to show this data in human readable format.

$ linchpin journal --view tx -t 136

ID: 136 Action: up

Target Run ID uHash Exit Code

dummy-new 290 27e1 0
libvirt-new 225 d88c 0

===

Target Records

Target Records are much more detailed. Generally, the target records correspond to a specific Run ID (run_id). These
can also be referenced via the linchpin journal command, using the target (default) view.

$ linchpin journal dummy-new --view target

Target: dummy-new
run_id action uhash rc

225 up f9e5 0
224 destroy 89ea 0
223 up 89ea 0

The target record data is where the detail lies. Each record contains several sections, followed by possibly several
sub-sections. A complete target record is very large. Let’s have a look at record 225 for the ‘dummy-new’ target.

"225": {
"action": "up",
"end": "03/27/2018 12:18:21 PM",
"inputs": [

{
"topology_data": {

"resource_groups": [
{

"resource_definitions": [
{

"count": 3,
"name": "web",

(continues on next page)

98 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"role": "dummy_node"
},
{

"count": 1,
"name": "test",
"role": "dummy_node"

}
],
"resource_group_name": "dummy",
"resource_group_type": "dummy"

}
],
"topology_name": "dummy_cluster"

}
},
{

"layout_data": {
"inventory_layout": {

"hosts": {
"example-node": {

"count": 3,
"host_groups": [

"example"
]

},
"test-node": {

"count": 1,
"host_groups": [

"test"
]

}
},
"inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash

→˓}}.inventory",
"vars": {

"hostname": "__IP__"
}

}
}

},
{

"hooks_data": {
"postup": [

{
"actions": [

"echo hello"
],
"name": "hello",
"type": "shell"

}
]

}
}

],
"outputs": [

{
"resources": [

(continues on next page)

1.2. Documentation 99

LinchPin Documentation, Release 2.0.0

(continued from previous page)

{
"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,
"hosts": [

"web-f9e5-0.example.net",
"web-f9e5-1.example.net",
"web-f9e5-2.example.net"

]
},
{

"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,
"hosts": [

"test-f9e5-0.example.net"
]

}
]

}
],
"rc": 0,
"start": "03/27/2018 12:18:02 PM",
"uhash": "f9e5",
"cfgs": [

{
"evars": []

},
{

"magics": []
},
{

"user": []
}

]
},

As might be gleaned from looking at the JSON, there are a few main sections. Some of these sections, have subsections.
The main sections include:

* action

* start

* end

* uhash

* rc

* inputs

* outputs

* cfgs

Most of these sections are self-explanatory, or can be easily determined. However, there are three that may need further
explanation.

100 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Inputs

The RunDB stored all inputs in the “inputs” section.

"inputs": [
{

"topology_data": {
"resource_groups": [

{
"resource_definitions": [

{
"count": 3,
"name": "web",
"role": "dummy_node"

},
{

"count": 1,
"name": "test",
"role": "dummy_node"

}
],
"resource_group_name": "dummy",
"resource_group_type": "dummy"

}
],
"topology_name": "dummy_cluster"

}
},
{

"layout_data": {
"inventory_layout": {

"hosts": {
"example-node": {

"count": 3,
"host_groups": [

"example"
]

},
"test-node": {

"count": 1,
"host_groups": [

"test"
]

}
},
"inventory_file": "{{ workspace }}/inventories/dummy-new-{{ uhash }}.

→˓inventory",
"vars": {

"hostname": "__IP__"
}

}
}

},
{

"hooks_data": {
"postup": [

{

(continues on next page)

1.2. Documentation 101

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"actions": [
"echo hello"

],
"name": "hello",
"type": "shell"

}
]

}
}

],

Currently, the inputs section has three sub-sections, topology_data, layout_data, and hooks_data. These three sub-
sections hold relevant data. The use of this data is generally for record-keeping, and more recently to allow for reuse
of the data with linchpin up/destroy actions.

Additionally, some of this data is used to create the outputs, which are stored in the outputs section.

Outputs

Going forward, the outputs section will contain much more data than is displayed below. Items like ansible_inventory,
and user_data will also appear in the database. These will be provided in future development.

"outputs": [
{

"resources": [
{

"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,
"hosts": [

"web-f9e5-0.example.net",
"web-f9e5-1.example.net",
"web-f9e5-2.example.net"

]
},
{

"changed": true,
"dummy_file": "/tmp/dummy.hosts",
"failed": false,
"hosts": [

"test-f9e5-0.example.net"
]

}
]

}
],

The lone sub-section is resources. For the dummy-new target, the data provided is simplistic. However, for providers
like openstack or aws, the resources become quite large and extensive. Here is a snippet of an openstack resources
sub-section.

"resources": [
{

"changed": true,
"failed": false,

(continues on next page)

102 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"ids": [
"fc96e134-4a68-4aaa-a053-7f53cae21369"

],
"openstack": [

{
"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",
"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
"OS-SRV-USG:terminated_at": null,
"accessIPv4": "10.8.245.175",
"accessIPv6": "",
"addresses": {

"atomic-e2e-jenkins-test": [
{

"OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
"OS-EXT-IPS:type": "fixed",
"addr": "172.16.171.15",
"version": 4

},
{

"OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:ba:0e:5e",
"OS-EXT-IPS:type": "floating",
"addr": "10.8.245.175",
"version": 4

}
]

},
"adminPass": "<REDACTED>",
"az": "nova",
"cloud": "",
"config_drive": "",
"created": "2017-11-27T19:43:47Z",
"disk_config": "MANUAL",
"flavor": {

"id": "2",
"name": "m1.small"

},
"has_config_drive": false,
"hostId": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64",
"host_id": "20a84eb5691c546defeac6b2a5b4586234aed69419641215e0870a64

→˓",
"id": "fc96e134-4a68-4aaa-a053-7f53cae21369",

"image": {
"id": "eae92800-4b49-4e81-b876-1cc61350bf73",
"name": "CentOS-7-x86_64-GenericCloud-1612"

},
"interface_ip": "10.8.245.175",
"key_name": "ci-factory",
"launched_at": "2017-11-27T19:43:54.000000",
"location": {

"cloud": "",
"project": {

"domain_id": null,
"domain_name": null,

(continues on next page)

1.2. Documentation 103

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"id": "6e65fbc3161648e78fde849c7abbd30f",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": "nova"

},
"metadata": {},
"name": "database-44ee-1",
"networks": {},
"os-extended-volumes:volumes_attached": [],
"power_state": 1,
"private_v4": "172.16.171.15",
"progress": 0,
"project_id": "6e65fbc3161648e78fde849c7abbd30f",
"properties": {

"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",
"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2017-11-27T19:43:54.000000",
"OS-SRV-USG:terminated_at": null,
"os-extended-volumes:volumes_attached": []

},
"public_v4": "10.8.245.175",
"public_v6": "",
"region": "",
"security_groups": [

{
"description": "Default security group",
"id": "1da85eb2-3c51-4729-afc4-240e187a30ce",
"location": {

"cloud": "",
"project": {

"domain_id": null,
"domain_name": null,
"id": "6e65fbc3161648e78fde849c7abbd30f",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
.. snip ..

Note: The data above continues for several more pages, and would take up too much space to document. A savvy
user might cat the rundb file and pipe it to the python ‘json.tool’ module.

Each provider returns a large structure like this as results of the provisioning (up) process. For the teardown, the data
can be large, but is generally more succinct.

104 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

RunDB Drivers

Custom database drivers can be added to LinchPin. LinchPin requires that these drivers contain certain functions in
order to interface with the existing LinchPin code.

Existing Drivers

Currently, LinchPin supports two drivers.

TinyDB

This is the default database driver for LinchPin. It has no exernal dependencies but cannot support reading and writing
from multiple linchpin processes at the same time. If you need this functionality, you should use another driver.

MongoDB

This driver has the advantage of concurrency, but also requires a daemon in order to run.

Adding Custom Drivers

All database drivers for LinchPin must extend the linchpin.rundb.BaseDB class and contain the following functions:

@schema.setter
def schema(self, schema)

Sets the schema property for the class. If your database requires a schema (such as MySQL), this is where you should
set it.

def init_table(self, table)

Sets up the table for the current run of LinchPin. Returns a run_id for the next run. run_id is a variable used to identify
a document in the RunDB. It begins at 1 and increments from there.

def update_record(self, table, run_id, key, value)

updates a single record in the database. Note that the “outputs” record is a list containing two items: a dict in the
format of { “resources”: [] } and another one in the format of { “inventory_path”: [] }. If a resources dict is passed
to update_record(), the array needs to be appended to the existing resources array. If the driver supports concurrent
transactions, care must be taken to avoid race conditions.

def get_tx_record(self, tx_id)

Retrieves a single transaction record for the rundb. A transaction record contains a list of the targets provisioned, their
uhashes and their return codes. It does not contain the topology, layouts, or outputs from the cloud.

def get_tx_records(self, tx_ids)

Gets multiple records corresponding with a list of transaction ids.

def get_run_id(self, table, action='up')

Returns the id corresponding with the most recent instance of the given action.

1.2. Documentation 105

LinchPin Documentation, Release 2.0.0

def get_record(self, table, action=None, run_id=None)

Returns a single record. If a run_id is supplied, the record corresponding with the given run_id will be returned. Else
if an action is supplied, the most recent record corresponding with that action is supplied.

def get_records(self, table, count=10)

Returns the count most recent records.

def get_tables(self)

Returns a list of tables.

def remove_record(self, table, key)

Removes a record from the rundb

def purge(self, table)

Deletes a single database

In addition, the functions that use the database use the @usedb decorator, which opens the database, performs the
operation, and closes it again

def usedb(func):
def func_wrapper(*args, **kwargs):

args[0]._opendb()
x = func(*args, **kwargs)
args[0]._closedb()
return x

return func_wrapper

Context Distiller

New in version 1.5.2

The purpose of the Context Distiller is to take outputs from provisioned resources and provide them to a user as a json
file.

The distiller currently supports the following roles:

* os_server

* aws_ec2

* bkr_server

* dummy_node (for testing)

For each role, the distiller collects specific fields from the resource data.

Note: Please be aware that this feature is planned to integrated with other tooling to make extracting resource data
more flexible in the future.

106 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Enabling the Distiller

To enable the Context Distiller, the following must be set in the :dirs1.5:`linchpin.conf <workspace/linchpin.conf>`.

[lp]
distill_data = True

disable generating the resources file
[evars]
generate_resources = False

Note: Other settings may already be in these sections. If that is the case, just add these settings to the proper section.

Hint: It may not be immediately obvious, as LinchPin uses the RunDB data to return resource data from a run. In
this way, the resource data can be stored somewhere and retrieved at any time by future tooling. Because of this, the
resources file is disabled. In this way, the resource data is stored solely in the RunDB for easy retrieval.

Fields to Retreive

Warning: Modifying the distilled fields can cause unexpected results. MODIFY THIS DATA AT YOUR OWN
RISK!

Within the :code1.5:`linchpin.constants <linchpin/linchpin.constants>` file, the [distiller] section exists. Described
within this section is how each role gathers the applicable data to distill.

[distiller]
bkr_server = id,url,system
dummy_node: hosts
aws_ec2 = instances.id,instances.public_ip,instances.private_ip,instances.public_dns_
→˓name,instances.private_dns_name,instances.tags:name
os_server = servers.id,servers.interface_ip,servers.name,servers.private_v4,servers.
→˓public_v4

If the distiller is enabled, the bkr_server role will distill the id, url, and system values for each instance provisioned
during the transaction.

Output

The distiller creates one file, placed in <workspace>/resources/linchpin.distilled. Each time an ‘up’
transaction is performed, the distilled data is overwritten.

If no output is recorded, it’s likely that the provisioning didn’t complete successfully, or an error occurred during data
collection. The data is still available in the RunDB.

This is the output for the aws_ec2 role, using the aws-ec2-new target, which provisioned two instances.

{
"aws-ec2-new": [

{
(continues on next page)

1.2. Documentation 107

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"id": "i-0d8616a3d08a67f38",
"name": "demo-day",
"private_dns_name": "ip-172-31-18-177.us-west-2.compute.internal",
"private_ip": "172.31.18.177",
"public_dns_name": "ec2-54-202-80-27.us-west-2.compute.amazonaws.com",
"public_ip": "54.202.80.27"

},
{

"id": "i-01112909e184530fc",
"name": "demo-night",
"private_dns_name": "ip-172-31-20-190.us-west-2.compute.internal",
"private_ip": "172.31.20.190",
"public_dns_name": "ec2-54-187-172-80.us-west-2.compute.amazonaws.com",
"public_ip": "54.187.172.80"

}
]

}

PinFile Configs

You can use the cfgs section of the PinFile to define variables for use in inventories. These variables map to values in
the json returned by the relevant provider, and are dot-separated. For example, the variable __IP__ in the cfgs below
would map to the address 55.234.16.11 in the following json:

{
'addresses': [

{
'public_v4': '55.234.16.11'

},
{

'public_v4': '219.16.122.93'
}

]
}

cfgs:
aws:
__IP__: addresses.0.public_v4

Information on the json returned by different providers can be found below:

AWS Sample Output

{
"kernel": null,
"root_device_type": "ebs",
"private_dns_name": "",
"public_ip": "",
"private_ip": "",
"id": "i-01cc0455abe8465b8",
"ebs_optimized": false,
"state": "running",
"virtualization_type": "hvm",

(continues on next page)

108 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"root_device_name": "/dev/sda1",
"ramdisk": null,
"block_device_mapping": {

"/dev/sdb": {
"status": "attached",
"delete_on_termination": true,
"volume_id": "vol-0f3311851115c8241"

},
"/dev/sda1": {
"status": "attached",
"delete_on_termination": true,
"volume_id": "vol-00f6f149c57ac152c"

}
},
"key_name": null,
"image_id": "ami-984189e2",
"tenancy": "default",
"groups": {
"sg-eae64983": "default",
"sg-8a1d78e3": "public"

},
"public_dns_name": "",
"state_code": 16,
"tags": {
"color": "blue",
"resource_group_name": "aws",
"shape": "oval",
"name": "demo-day"

},
"placement": "us-east-1c",
"ami_launch_index": "0",
"dns_name": "",
"region": "us-east-1",
"launch_time": "2018-10-01T17:19:23.000Z",
"instance_type": "m1.small",
"architecture": "x86_64",
"hypervisor": "xen"

}

Dummy Sample Output

{
"hypervisor": "xen"
"failed": false,
"changed": true,
"hosts": [

dummy-8c8b6b-0,
dummy-8c8b6b-1,
dummy-8c8b6b-2,

],
"resource_type": "dummy_res",
"dummy_file": "/tmp/dummy.hosts"

}

1.2. Documentation 109

LinchPin Documentation, Release 2.0.0

Libvirt Sample Output

{
"ip": "192.168.122.119",
"name": "centos71-872d6a_0"

}

openstack sample output

{
"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",
"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2018-09-19T14:53:12.000000",
"OS-SRV-USG:terminated_at": null,
"accessIPv4": "",
"accessIPv6": "",
"addresses": {

"e2e-openstack": [
{

"OS-EXT-IPS-MAC:mac_addr": "fa:16:3e:a1:c0:6b",
"OS-EXT-IPS:type": "fixed",
"addr": "",
"version": 4

}
]

},
"adminPass": "",
"az": "nova",
"cloud": "defaults",
"config_drive": "",
"created": "2018-09-19T14:46:51Z",
"created_at": "2018-09-19T14:46:51Z",
"disk_config": "MANUAL",
"flavor": {

"id": "2",
"name": "m1.small"

},
"has_config_drive": false,
"hostId": "190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0",
"host_id": "190ddf5e439d5fa9a5e767485c44e8fdbfa206166eaf5aa6ed100fc0",
"id": "83e2d9d3-7823-45f3-8a58-52452acddaa8",
"image": {

"id": "11b72b11-59e8-4919-a918-265c1566bd45",
"name": "CentOS-7-x86_64-GenericCloud-1612"

},
"interface_ip": "",
"key_name": "ci-factory",
"launched_at": "2018-09-19T14:53:12.000000",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
(continues on next page)

110 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": "nova"

},
"metadata": {},
"name": "596-master-d7b60a-1",
"networks": {},
"os-extended-volumes:volumes_attached": [],
"power_state": 1,
"private_v4": "",
"progress": 0,
"project_id": "f53391f4d50643f283af5d59fc450e09",
"properties": {

"OS-DCF:diskConfig": "MANUAL",
"OS-EXT-AZ:availability_zone": "nova",
"OS-EXT-STS:power_state": 1,
"OS-EXT-STS:task_state": null,
"OS-EXT-STS:vm_state": "active",
"OS-SRV-USG:launched_at": "2018-09-19T14:53:12.000000",
"OS-SRV-USG:terminated_at": null,
"os-extended-volumes:volumes_attached": []

},
"public_v4": "",
"public_v6": "",
"region": "",
"security_groups": [

{
"description": "Default security group",
"id": "f48c6b12-497b-4301-97f5-0c8749815089",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"name": "default",
"project_id": "f53391f4d50643f283af5d59fc450e09",
"properties": {},
"security_group_rules": [

{
"direction": "ingress",
"ethertype": "IPv4",
"group": {},
"id": "1b315474-5730-483e-a9b7-712530c17b19",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,

(continues on next page)

1.2. Documentation 111

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": 22,
"port_range_min": 22,
"project_id": "",
"properties": {

"group": {}
},
"protocol": "tcp",
"remote_group_id": null,
"remote_ip_prefix": "0.0.0.0/0",
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
"tenant_id": ""

},
{

"direction": "ingress",
"ethertype": "IPv4",
"group": {

"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

},
"id": "2e45cfff-370d-460f-a88f-f3042b4a25d8",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": null,
"port_range_min": null,
"project_id": "",
"properties": {

"group": {
"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

}
},
"protocol": null,
"remote_group_id": null,
"remote_ip_prefix": null,
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
"tenant_id": ""

},
{

"direction": "ingress",
"ethertype": "IPv4",
"group": {},
"id": "33078914-a857-45c4-8ed2-d4ba9d7b41be",

(continues on next page)

112 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

(continued from previous page)

"location": {
"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": null,
"port_range_min": null,
"project_id": "",
"properties": {

"group": {}
},
"protocol": "icmp",
"remote_group_id": null,
"remote_ip_prefix": "0.0.0.0/0",
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
"tenant_id": ""

},
{

"direction": "ingress",
"ethertype": "IPv4",
"group": {

"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

},
"id": "b801bf97-f470-476b-9d63-b692de45ec67",
"location": {

"cloud": "defaults",
"project": {

"domain_id": null,
"domain_name": null,
"id": "f53391f4d50643f283af5d59fc450e09",
"name": "VALUE_SPECIFIED_IN_NO_LOG_PARAMETER"

},
"region_name": "",
"zone": null

},
"port_range_max": null,
"port_range_min": null,
"project_id": "",
"properties": {

"group": {
"name": "default",
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

}
},
"protocol": null,
"remote_group_id": null,
"remote_ip_prefix": null,
"security_group_id": "f48c6b12-497b-4301-97f5-0c8749815089",
"tenant_id": ""

}
(continues on next page)

1.2. Documentation 113

LinchPin Documentation, Release 2.0.0

(continued from previous page)

],
"tenant_id": "f53391f4d50643f283af5d59fc450e09"

}
],
"status": "ACTIVE",
"task_state": null,
"tenant_id": "f53391f4d50643f283af5d59fc450e09",
"terminated_at": null,
"updated": "2018-09-19T14:53:12Z",
"user_id": "e32798f55da74cffa90d629e50939582",
"vm_state": "active",
"volumes": []

}

1.3 Developer Information

The following information may be useful for those wishing to extend LinchPin.

1.3.1 Python API Reference

This page contains the list of project’s modules

Linchpin API and Context Modules

The linchpin module provides the base API for managing LinchPin, Ansible, and other useful aspects for provisioning.

class linchpin.LinchpinAPI(ctx)

bind_to_hook_state(callback)
Function used by LinchpinHooksclass to add callbacks

Parameters callback – callback function

do_action(provision_data, action='up', run_id=None, tx_id=None)
This function takes provision_data, and executes the given action for each target within the provision_data
disctionary.

Parameters provision_data – PinFile data as a dictionary, with

target information

Parameters

• action – Action taken (up, destroy, etc). (Default: up)

• run_id – Provided run_id to duplicate/destroy (Default: None)

• tx_id – Provided tx_id to duplicate/destroy (Default: None)

do_validation(provision_data, old_schema=False)
This function takes provision_data, and attempts to validate the topologies for that data

Parameters provision_data – PinFile data as a dictionary, with

target information

114 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

generate_inventory(resource_data, layout, inv_format='cfg', topology_data={}, con-
fig_data={})

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

get_pf_data_from_rundb(targets, run_id=None, tx_id=None)
This function takes the action and provision_data, returns the pinfile data

Parameters

• targets – A list of targets for which to get the data

• targets – Tuple of target(s) for which to gather data.

• run_id – run_id associated with target (Default: None)

• tx_id – tx_id for which to gather data (Default: None)

get_run_data(tx_id, fields, targets=())
Returns the RunDB for data from a specified field given a tx_id. The fields consist of the major sections
in the RunDB (target view only). Those fields are action, start, end, inputs, outputs, uhash, and rc.

Parameters

• tx_id – tx_id to search

• fields – Tuple of fields to retrieve for each record requested.

• targets – Tuple of targets to search from within the tx_ids

property hook_state
getter function for hook_state property of the API object

lp_journal(view='target', targets=[], fields=None, count=1, tx_ids=None)

prepare_rundb(target, action, run_id=None, tx_id=None)

run_hooks(state, action)

run_target(target, resources, action, run_id=None)

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

• key – key to use

1.3. Developer Information 115

LinchPin Documentation, Release 2.0.0

• value – value to set into section within config file

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

setup_pbar()

setup_rundb()
Configures the run database parameters, sets them into extra_vars

ssh(target)

update_rundb(rundb_id, target, provision_data)

write_results_to_rundb(results, action)

linchpin.progress_monitor(disable_pbar, target)

linchpin.tqdm_or_mock(disable, *args, **kwargs)

class linchpin.context.LinchpinContext
LinchpinContext object, which will be used to manage the cli, and load the configuration file.

get_cfg(section=None, key=None, default=None)
Get cfgs value(s) by section and/or key, or the whole cfgs object

Parameters

• section – section from ini-style config file

• key – key to get from config file, within section

• default – default value to return if nothing is found.

Does not apply if section is not provided.

get_env_vars(key=None, default=None)
Get the current env_vars

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

get_evar(key=None, default=None)
Get the current evars (extra_vars)

Parameters

• key – key to use

• default – default value to return if nothing is found

(default: None)

load_config(workspace=None, config_path=None, search_path=None)
Update self.cfgs from the linchpin configuration file (linchpin.conf).

The following paths are used to find the config file. The search path defaults to the first-found order:

116 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

* /etc/linchpin.conf

* /linchpin/library/path/linchpin.conf

* <workspace>/linchpin.conf

An alternate search_path can be passed.

Parameters search_path – A list of paths to search a linchpin config

(default: None)

load_global_evars()
Instantiate the evars variable, then load the variables from the ‘evars’ section in linchpin.conf. This will
then be passed to invoke_linchpin, which passes them to the Ansible playbook as needed.

log(msg, **kwargs)
Logs a message to a logfile

Parameters

• msg – message to output to log

• level – keyword argument defining the log level

log_debug(msg)
Logs a DEBUG message

log_info(msg)
Logs an INFO message

log_state(msg)
Logs nothing, just calls pass

Attention: state messages need to be implemented in a subclass

set_cfg(section, key, value)
Set a value in cfgs. Does not persist into a file, only during the current execution.

Parameters

• section – section within ini-style config file

• key – key to use

• value – value to set into section within config file

set_env_vars(key, value)
Set a value into env_vars. Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

set_evar(key, value)
Set a value into evars (extra_vars). Does not persist into a file, only during the current execution.

Parameters

• key – key to use

• value – value to set into evars

1.3. Developer Information 117

LinchPin Documentation, Release 2.0.0

setup_logging()
Setup logging to the console only

Attention: Please implement this function in a subclass

class linchpin.ansible_runner.Options(connection, module_path, forks, become, be-
come_method, become_user, listhosts, listtasks,
listtags, syntax, remote_user, private_key_file,
ssh_common_args, ssh_extra_args, sftp_extra_args,
scp_extra_args, start_at_task, verbosity, check, diff,
vault_password_files)

linchpin.ansible_runner.ansible_runner(playbook_path, module_path, extra_vars,
vault_password_file, inventory_src='localhost',
verbosity=2, console=True, env_vars=(),
use_shell=False)

Uses the Ansible API code to invoke the specified linchpin playbook :param playbook: Which ansible playbook
to run (default: ‘up’) :param console: Whether to display the ansible console (default: True)

linchpin.ansible_runner.ansible_runner_24x(playbook_path, extra_vars, options, inven-
tory_src='localhost', console=True)

linchpin.ansible_runner.ansible_runner_28x(playbook_path, extra_vars, options, inven-
tory_src='localhost', console=True)

linchpin.ansible_runner.ansible_runner_shell(playbook_path, module_path, ex-
tra_vars, vault_password_file=None,
inventory_src='localhost', verbosity=1,
console=True, env_vars=(), check=False)

linchpin.ansible_runner.set_environment_vars(env_vars)
Sets environment variables passed : param env_vars: list of tuples

linchpin.ansible_runner.subprocess_runner(cmd, shell=False)
Runs subprocess commands param: cmd in a list param: shell to print stdout, stderr or not

linchpin.ansible_runner.suppress_stdout()
This context manager provides tooling to make Ansible’s Display class not output anything when used

class linchpin.callbacks.PlaybookCallback(display=None, options=None, ansi-
ble_version=2.3)

Playbook callback

v2_runner_on_failed(result, **kwargs)
Save failed result

v2_runner_on_ok(result)
Save ok result

class linchpin.api.Pinfile(pinfile={}, config='linchpin.conf', workspace_path=None)

destroy()
Destroys pinfile resources constructed through the Pinfile object

returns output dictionary

up()
provsions pinfile resources constructed through the Pinfile object

returns output dictionary

118 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

class linchpin.api.Workspace(path=None)

destroy()
Destroys workspace resources constructed through the workspace object

returns output dictionary

find_pinfile()
find_pinfile function to search pinfiles in workspace path returns pinfile path if found

get_cfg(section, key)
get_cfg gets current linchpin.conf values based on section, key

returns string

get_credentials_path()
get_credentials_path function gets current credentials path

returns path to credential file

get_evar(key)
get_evar function sets extra vars in current run

Parameters key – string

returns value for corresponding key

get_flag_ignore_failed_hooks()
get_flag_ignore_failed_hooks get current ignore_failed_hooks flag value

returns boolean

get_flag_no_hooks()
get_flag_no_hooks gets current vault_encryption flag value

returns boolean

get_inventory(inv_format='json')
get_inventory gets inventory of latest run

param: inv_format: string json/ini

returns dict/string

get_latest_run()
get_latest_run get latest resources provisioned

returns dict

get_vault_encryption()
get_vault_encryption gets current vault_encryption flag value

returns boolean

get_vault_pass()
get_valut_pass get current valut_password set

returns boolean

get_workspace()
get_workspace function gets current workspace path

Parameters path – path to workspace directory

returns workspace path if set

1.3. Developer Information 119

LinchPin Documentation, Release 2.0.0

load_data(path)
load_data function to load from workspace path

Parameters path – path to workspace directory

set_cfg(section, key, value)
get_flag_ignore_failed_hooks get current ignore_failed_hooks flag value

returns boolean

set_credentials_path(creds_path)
set_credentials_path function set credentials path

Parameters creds_path – path to credential directory

returns True/False

set_evar(key, value)
set_evar function sets extra vars in current run

Parameters

• key – string

• value – string

returns key,value tuple

set_flag_ignore_failed_hooks(flag)
set_flag_ignore_failed_hooks sets current ignore_failed_hooks flag value

param: flag: boolean

set_flag_no_hooks(flag)
set_flag_no_hooks sets no_hooks flag

param: flag: boolean

returns boolean

set_vault_encryption(vault_enc)
set_vault_encryption sets vault_encryption flag if credentials are encrypted in vault current credentials
path

param: vault_enc: boolean

returns boolean

set_vault_pass(vault_pass)
set_vault_pass set current vault_pass value

param: vault_pass: string returns boolean

set_workspace(path)
set_workspace function sets workspace path

Parameters path – path to workspace directory

returns workspace path if set

up()
provisions workspace resources constructed through the workspace object

returns output dictionary

validate()
validate function to validate loaded workspace/pinfile

120 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

LinchPin Command-Line API

The linchpin.cli module provides an API for writing a command-line interface, the LinchPin Command Line Shell
implementation being the reference implementation.

class linchpin.cli.LinchpinCli(ctx)

find_include(filename, ftype='topology')
Find the included file to be acted upon.

Parameters

• filename – name of file from to be loaded

• ftype – the file type to locate: topology, layout (default: topology)

lp_destroy(targets=(), run_id=None, tx_id=None, env_vars=None)
This function takes a list of targets, and performs a destructive teardown, including undefining nodes,
according to the target(s).

See also:

lp_down - currently unimplemented

Parameters

• targets – A tuple of targets to destroy.

• run_id – An optional run_id to use

• tx_id – An optional tx_id to use

lp_fetch(src, root='', fetch_type='workspace', fetch_protocol='FetchGit', fetch_ref=None,
dest_ws=None, nocache=False)

Fetch a workspace from git, http(s), or a local directory, and generate a provided workspace

Parameters

• src – The URL or URI of the remote directory

• root – Used to specify the location of the workspace within the remote. If root is
not set, the root of the given remote will be used.

• fetch_type – Specifies which component(s) of a workspace the user wants to
fetch. Types include: topologies, layouts, resources, hooks, workspace. (default:
workspace)

• fetch_protocol – The protocol to use to fetch the workspace. (default: git)

• fetch_ref – Specify the git branch. Used only with git protocol (eg. master). If
not used, the default branch will be used.

• dest_ws – Workspaces destination, the workspace will be relative to this location.

If dest_ws is not provided and -r/–root is provided, the basename will be the name
of the workspace within the destination. If no root is provided, a random workspace
name will be generated. The destination can also be explicitly set by using -w (see
linchpin –help).

• nocache – If true, don’t copy from the cache dir, unless it’s longer than the config-
ured fetch.cache_days (1 day) (default: False)

1.3. Developer Information 121

LinchPin Documentation, Release 2.0.0

lp_init(providers=['libvirt'])
Initializes a linchpin project. Creates the necessary directory structure, includes PinFile, topologies and
layouts for the given provider. (Default: Dummy. Other providers not yet implemented.)

Parameters providers – A list of providers for which templates

(and a target) will be provided into the workspace. NOT YET IMPLEMENTED

lp_setup(providers='all')
This function takes a list of providers, and setsup the dependencies :param providers:

A tuple of providers to install dependencies

lp_up(targets=(), run_id=None, tx_id=None, inv_f='cfg', env_vars=())
This function takes a list of targets, and provisions them according to their topology.

Parameters

• targets – A tuple of targets to provision

• run_id – An optional run_id if the task is idempotent

• tx_id – An optional tx_id if the task is idempotent

lp_validate(targets=(), old_schema=False)
This function takes a list of targets, and validates their topology.

Parameters targets – A tuple of targets to provision

:param old_schema Denotes whether schema should be validated with the old schema rather than the
new one!/usr/bin/env python

property pf_data
getter for pinfile template data

property pinfile
getter function for pinfile name

property workspace
getter function for context workspace

class linchpin.cli.context.LinchpinCliContext
Context object, which will be used to manage the cli, and load the configuration file

property inventory
getter function for inventory

property inventory_folder
getter function for inventory_folder

property inventory_path
getter function for inventory_path

load_config(lpconfig=None)
Update self.cfgs from the linchpin configuration file (linchpin.conf).

The following paths are used to find the config file. The search path defaults to the first-found order:

* /etc/linchpin.conf

* /linchpin/library/path/linchpin.conf

* <workspace>/linchpin.conf

An alternate search_path can be passed.

122 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Parameters search_path – A list of paths to search a linchpin config

(default: None)

log(msg, **kwargs)
Logs a message to a logfile or the console

Parameters

• msg – message to log

• lvl – keyword argument defining the log level

• msg_type – keyword argument giving more flexibility.

Note: Only msg_type STATE is currently implemented.

log_debug(msg)
Logs a DEBUG message

log_info(msg)
Logs an INFO message

log_state(msg)
Logs a message to stdout

property pinfile
getter function for pinfile name

setup_logging()
Setup logging to a file, console, or both. Modifying the linchpin.conf appropriately will provide function-
ality.

property workspace
getter function for workspace

LinchPin Command Line Shell implementation

The linchpin.shell module contains calls to implement the Command Line Interface within linchpin. It uses the Click
command line interface composer. All calls here interface with the LinchPin Command-Line API API.

class linchpin.shell.click_default_group.DefaultGroup(*args, **kwargs)
Invokes a subcommand marked with default=True if any subcommand not chosen.

Parameters default_if_no_args – resolves to the default command if no arguments passed.

command(*args, **kwargs)
A shortcut decorator for declaring and attaching a command to the group. This takes the same argu-
ments as command() but immediately registers the created command with this instance by calling into
add_command().

format_commands(ctx, formatter)
Extra format methods for multi methods that adds all the commands after the options.

get_command(ctx, cmd_name)
Given a context and a command name, this returns a Command object if it exists or returns None.

list_commands(ctx)
Provide a list of available commands. Anything deprecated should not be listed

1.3. Developer Information 123

http://click.pocoo.org

LinchPin Documentation, Release 2.0.0

parse_args(ctx, args)
Given a context and a list of arguments this creates the parser and parses the arguments, then modifies the
context as necessary. This is automatically invoked by make_context().

resolve_command(ctx, args)

set_default_command(command)
Sets a command function as the default command.

LinchPin Hooks API

The linchpin.hooks module manages the Linchpin Hooks functionality within LinchPin.

class linchpin.hooks.ActionBlockRouter(name, *args, **kwargs)
Proxy pattern implementation for fetching actionmanagers by name

class linchpin.hooks.LinchpinHooks(api)

execute_hook(block_obj, target)

fetch_git_src(block)

fetch_src(block)

get_custom_action_manager(action_block)

global_hooks_block(block)

prepare_ctx_params()
prepares few context parameters based on the current target_data that is being set. these parameters are
based topology name.

prepare_inv_params()

resolve_block_path(block)

run_action(state, block, tgt_data)

run_actions(state, action_blocks, tgt_data, is_global=False)
Runs actions inside each action block of each target

Parameters

• action_blocks – list of action_blocks each block constitues to a type of hook

• tgt_data – data specific to target, which can be dict of

topology , layout, outputs, inventory :param is_global: scope of the hook

example: action_block: - name: do_something

type: shell actions:

• echo ‘ this is ‘postup’ operation Hello hai how r u ?’

run_hooks(state, is_global=False)
Function to run hook all hooks from Pinfile based on the state :param state: hook state (currently, preup,
postup, predestroy, postdestroy) :param is_global: whether the hook is global (can be applied to multiple
targets)

run_inventory_gen(data)

run_local_actions(state, action_blocks, tgt_data)

property rundb

124 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

LinchPin Extra Modules

These are modules not documented elsewhere in the LinchPin API, but may be useful to a developer.

class linchpin.utils.dataparser.DataParser

load_pinfile(pinfile)

parse_json_yaml(data, ordered=True)
parses yaml file into json object

process(file_w_path, data=None)
Processes the PinFile and any data (if a template) using Jinja2. Returns json of PinFile, topology, layout,
and hooks.

Parameters

• file_w_path – Full path to the provided file to process

• data – A JSON representation of data mapped to a Jinja2 template in file_w_path

render(template, context, ordered=True)
Performs the rendering of template and context data using Jinja2.

Parameters

• template – Full path to the Jinja2 template

• context – A dictionary of variables to be rendered againt the template

run_script(script)

write_json(provision_data, pf_outfile)

exception linchpin.exceptions.ActionError(*args, **kwargs)

exception linchpin.exceptions.ActionManagerError(*args, **kwargs)

exception linchpin.exceptions.HookError(*args, **kwargs)

exception linchpin.exceptions.LinchpinError(*args, **kwargs)

exception linchpin.exceptions.SchemaError(*args, **kwargs)

exception linchpin.exceptions.StateError(*args, **kwargs)

exception linchpin.exceptions.TopologyError(*args, **kwargs)

exception linchpin.exceptions.ValidationError(*args, **kwargs)

class linchpin.exceptions.ValidationErrorHandler(tree=None)

messages = {0: '{0}', 1: 'document is missing', 2: "field '{field}' is required", 3: "field '{field}' could not be recognized within the schema provided", 4: "field '{0}' is required", 5: 'depends on these values: {constraint}', 6: "{0} must not be present with '{field}'", 33: "'{0}' is not a document, must be a dict", 34: 'empty values not allowed', 35: 'null value not allowed', 36: "value for field '{field}' must be of type '{constraint}'", 37: 'must be of dict type', 38: 'length of list should be {0}, it is {1}', 39: 'min length is {constraint}', 40: 'max length is {constraint}', 65: "value does not match regex '{constraint}'", 66: 'min value is {constraint}', 67: 'max value is {constraint}', 68: "unallowed value '{value}' for field '{field}'. Allowed values are: {constraint}", 69: 'unallowed values {0}', 70: 'unallowed value {value}', 71: 'unallowed values {0}', 72: 'missing members {0}', 97: "field '{field}' cannot be coerced: {0}", 98: "field '{field}' cannot be renamed: {0}", 99: 'field is read-only', 100: "default value for '{field}' cannot be set: {0}", 129: "mapping doesn't validate subschema: {0}", 130: "one or more sequence-items don't validate: {0}", 131: "one or more keys of a mapping don't validate: {0}", 132: "one or more values in a mapping don't validate: {0}", 133: "one or more sequence-items don't validate: {0}", 145: 'one or more definitions validate', 146: 'none or more than one rule validate', 147: 'no definitions validate', 148: "one or more definitions don't validate"}

class linchpin.fetch.FetchHttp(ctx, fetch_type, src, dest, cache_dir, root='', root_ws='',
ref=None)

call_wget(fetch_dir=None)

fetch_files()

class linchpin.fetch.FetchGit(ctx, fetch_type, src, dest, cache_dir, root='', root_ws='',
ref=None)

call_clone(fetch_dir=None)

1.3. Developer Information 125

LinchPin Documentation, Release 2.0.0

fetch_files()

1.3.2 Developing LinchPin

This guide will walk you through the basics of contributing to LinchPin.

Topics

• Developing LinchPin

– Checking out the linchpin code

– Working on a feature or bug

– Creating a Pull Request

– Updating a Pull Request

– Merging a Pull Request

Checking out the linchpin code

You can check out the linchpin code by cloning the git repository from github.

$ git clone https://github.com/CentOS-PaaS-SIG/linchpin.git

But to submit pull requests (PR’s) you will need to fork the project on github webui first. Then you can add a remote
for that fork. This is where you will push your changes.

$ git remote add myfork git@github.com:<YOUR_GITHUB_USERNAME>/linchpin.git

Remember to replace <YOUR_GITHUB_USERNAME> with your actual github login.

Working on a feature or bug

All new work happens off the develop branch. It is good practice to make sure you have the latest version before
starting work on your changes.

$ git checkout develop
$ git pull

Now that you are in the develop branch and have the latest version you can create a new branch to use for your changes.

$ git checkout -b <DESCRIPTIVE_BRANCH_NAME>

Replace <DESCRIPTIVE_BRANCH_NAME> with a branch name that makes sense. This name will show up in your
github fork branches.

126 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

Creating a Pull Request

After you have committed your changes and tested them locally you can push them to your github fork repo.

$ git pull --rebase origin develop
$ git push myfork <DESCRIPTIVE_BRANCH_NAME>:<DESCRIPTIVE_BRANCH_NAME>
Enumerating objects: 1014, done.
Counting objects: 100% (768/768), done.
Delta compression using up to 8 threads
Compressing objects: 100% (290/290), done.
Writing objects: 100% (634/634), 83.86 KiB | 6.99 MiB/s, done.
Total 634 (delta 462), reused 436 (delta 324)
remote: Resolving deltas: 100% (462/462), completed with 84 local objects.
remote:
remote: Create a pull request for 'devel_docs' on GitHub by visiting:
remote: https://github.com/<YOUR_GITHUB_USERNAME>/linchpin/pull/new/devel_docs
remote:
To github.com:<YOUR_GITHUB_USERNAME>/linchpin.git

* [new branch] devel_docs -> devel_docs

The remote output explains how you can create a pull request by following the url referenced. Again,
<YOUR_GITHUB_USERNAME> will match your github username.

Once a pull request has been created the automated testing will kick off automatically. There is upstream testing which
is run on publicly accessable servers and there is downstream testing which is run inside Red Hat. We try to do most
testing upstream since this in an open source project, but some of the providers are only available inside Red Hat.

The upstream testing is referenced from the All checks section. Downstream testing is recorded as a comment.

If for some reason you need to kick off the testing again you can add a comment with the keyword [test] in it. It has to
be inside the square brackets in order to trigger.

Depending on your contribution status your PR may not kick off automated testing and will require someone from the
project to initiate the testing.

You can request reviewers at this point and depending on the files that have been changed github may suggest some
reviewers based on who last changed that code.

Updating a Pull Request

If changes are required for your PR then please amend to your commit and force push. If other commits have been
merged into develop since you started your PR you may need to rebase your PR on the latest code. One reason for this
is if changes to the automated testing infrastructure have been made.

$ git add -u
$ git commit --amend
$ git pull --rebase origin develop
$ git push myfork --force <DESCRIPTIVE_BRANCH_NAME>:<DESCRIPTIVE_BRANCH_NAME>

1.3. Developer Information 127

LinchPin Documentation, Release 2.0.0

Merging a Pull Request

When all the tests are passing and the code has been approved by the reviewers you can merge the PR. Don’t use the
merge button on github. There is a workflow that does the merge which is triggered by the comment [merge] in it.
Again, it has to be inside the square brackets in order to trigger.

The reason for this is we have containers used in the testing process which may need to be updated depending on the
code that is changed. Our workflow will promote those containers and do the merge on github.

Depending on your contribution status you may not have permission to do a merge. In that case you can leave a
comment saying the PR is ready for merging.

See also:

User Mailing List Subscribe and participate. A great place for Q&A

LinchPin on Github Code Contributions and Latest Software

webchat.freenode.net #linchpin IRC chat channel

LinchPin on PyPi Latest Release of LinchPin

1.4 FAQs

Below is a list of Frequently Asked Questions (FAQs), with answers. Feel free to submit yours in a Github issue.

1.5 Community

LinchPin has a small, but vibrant community. Come help us while you learn a skill.

See also:

User Mailing List Subscribe and participate. A great place for Q&A

LinchPin on Github Code Contributions and Latest Software

webchat.freenode.net #linchpin IRC chat channel

LinchPin on PyPi Latest Release of LinchPin

1.6 Glossary

The following is a list of terms used throughout the LinchPin documentation.

_async (boolean, default: False)

Used to enable asynchronous provisioning/teardown. Sets the Ansible async magic_var.

async_timeout (int, default: 1000)

How long the resouce collection (formerly outputs_writer) process should wait

_check_mode/check_mode (boolean, default: no)

This option does nothing at this time, though it may eventually be used for dry-run functionality based upon the
provider

128 Chapter 1. Why LinchPin?

https://www.redhat.com/mailman/listinfo/linchpin
https://github.com/CentOS-PaaS-SIG/linchpin
http://webchat.freenode.net?channels=linchpin
https://pypi.org/project/linchpin/
https://github.com/CentOS-PaaS-SIG/linchpin
https://www.redhat.com/mailman/listinfo/linchpin
https://github.com/CentOS-PaaS-SIG/linchpin
http://webchat.freenode.net?channels=linchpin
https://pypi.org/project/linchpin/

LinchPin Documentation, Release 2.0.0

default_schemas_path (file_path, default: <lp_path>/defaults/<schemas_folder>)

default path to schemas, absolute path. Can be overridden by passing schema / schema_file.

default_playbooks_path (file_path, default: <lp_path>/defaults/playbooks_folder>)

default path to playbooks location, only useful to the linchpin API and CLI

default_layouts_path (file_path, default: <lp_path>/defaults/<layouts_folder>)

default path to inventory layout files

default_topologies_path (file_path, default: <lp_path>/defaults/<topologies_folder>)

default path to topology files

default_resources_path (file_path, default: <lp_path>/defaults/<resources_folder>, formerly: outputs)

default landing location for resources output data

default_inventories_path (file_path, default: <lp_path>/defaults/<inventories_folder>)

default landing location for inventory outputs

evars

extra_vars Variables that can be passed into Ansible playbooks from external sources. Used in linchpin via the
linchpin.conf [evars] section.

hook Certain scripts can be called when a particular hook has been referenced in the PinFile. The currently available
hooks are preup, postup, predestroy, and postdestroy.

inventory

inventory_file If layout is provided, this will be the location of the resulting ansible inventory

inventories_folder A configuration entry in :docs1.5:`linchpin.conf <workspace/linchpin.conf>` which stores the
relative location where inventories are stored.

linchpin_config

lpconfig if passed on the command line with -c/--config, should be an ini-style config file with linchpin default
configurations (see BUILT-INS below for more information)

layout

layout_file

inventory_layout Definition for providing an Ansible (currently) static inventory file, based upon the provided topol-
ogy

layouts_folder (file_path, default: layouts)

relative path to layouts

lp_path base path for linchpin playbooks and python api

output (boolean, default: True, previous: no_output)

Controls whether resources will be written to the resources_file

PinFile

pinfile A YAML file consisting of a topology and an optional layout, among other options. This file is used by the
linchpin command-line, or Python API to determine what resources are needed for the current action.

playbooks_folder (file_path, default: provision)

relative path to playbooks, only useful to the linchpin API and CLI

1.6. Glossary 129

LinchPin Documentation, Release 2.0.0

provider A set of platform actions grouped together, which is provided by an external Ansible module. openstack
would be a provider.

provision

up An action taken when resources are to be made available on a particular provider platform. Usually corresponds
with the linchpin up command.

resource_definitions In a topology, a resource_definition describes what the resources look like when provisioned.
This example shows two different dummy_node resources, the resource named web will get 3 nodes, while and
the resource named test will get 1 resource.

resource_definitions:
- name: "web"

type: "dummy_node"
count: 3

- name: "test"
type: "dummy_node"
count: 1

resource_group_type For each resource group, the type is defined by this value. It’s used by the LinchPin API to
determine which provider playbook to run.

resources

resources_file File with the resource outputs in a JSON formatted file. Useful for teardown (destroy,down) actions
depending on the provider.

run_id

run-id An integer identifier assigned to each task.

• The run_id can be passed to linchpin up for idempotent provisioning

• The run_id can be passed to linchpin destroy to destroy any previously provisioned resources.

rundb

RunDB A simple json database, used to store the uhash and other useful data, including the run_id and output data.

schema JSON description of the format for the topology.

target Specified in the PinFile, the target references a topology and optional layout to be acted upon from the
command-line utility, or Python API.

teardown

destroy An action taken when resources are to be made unavailable on a particular provider platform. Usually corre-
sponds with the linchpin destroy command.

topologies_folder (file_path, default: topologies)

relative path to topologies

topology

topology_file A set of rules, written in YAML, that define the way the provisioned systems should look after executing
linchpin.

Generally, the topology and topology_file values are interchangeable, except after the file has been processed.

topology_name Within a topology_file, the topology_name provides a way to identify the set of resources being acted
upon.

uhash

130 Chapter 1. Why LinchPin?

LinchPin Documentation, Release 2.0.0

uHash Unique-ish hash associated with resources on a provider basis. Provides unique resource names and data if
desired. The uhash must be enabled in linchpin.conf if desired.

workspace If provided, the above variables will be adjusted and mapped according to this value. Each path will use
the following variables:

topology / topology_file = /<topologies_folder>
layout / layout_file = /<layouts_folder>
resources / resources_file = /resources_folder>
inventory / inventory_file = /<inventories_folder>

If the WORKSPACE environment variable is set, it will be used here. If it is not, this variable can be set on the
command line with -w/--workspace, and defaults to the location of the PinFile bring provisioned.

Note: schema is not affected by this pathing

See also:

Source Code LinchPin Source Code

Note: Releases are formatted using semanting versioning. If the release shown above is a pre-release version, the
content listed may not be supported. Use latest for the most up-to-date documentation.

1.6. Glossary 131

https://github.com/CentOS-PaaS-SIG/linchpin
https://semver.org

LinchPin Documentation, Release 2.0.0

132 Chapter 1. Why LinchPin?

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

See also:

User Mailing List Subscribe and participate. A great place for Q&A

LinchPin on Github Code Contributions and Latest Software

webchat.freenode.net #linchpin IRC chat channel

LinchPin on PyPi Latest Release of LinchPin

133

https://www.redhat.com/mailman/listinfo/linchpin
https://github.com/CentOS-PaaS-SIG/linchpin
http://webchat.freenode.net?channels=linchpin
https://pypi.org/project/linchpin/

LinchPin Documentation, Release 2.0.0

134 Chapter 2. Indices and tables

PYTHON MODULE INDEX

l
linchpin, 114
linchpin.ansible_runner, 118
linchpin.api, 118
linchpin.callbacks, 118
linchpin.cli, 121
linchpin.cli.context, 122
linchpin.context, 116
linchpin.exceptions, 125
linchpin.fetch, 125
linchpin.hooks, 124
linchpin.hooks.action_managers, 124
linchpin.shell, 123
linchpin.shell.click_default_group, 123
linchpin.utils.dataparser, 125

135

LinchPin Documentation, Release 2.0.0

136 Python Module Index

INDEX

Symbols
_async, 128
_check_mode/check_mode, 128

A
ActionBlockRouter (class in linchpin.hooks), 124
ActionError, 125
ActionManagerError, 125
ansible_runner() (in module linch-

pin.ansible_runner), 118
ansible_runner_24x() (in module linch-

pin.ansible_runner), 118
ansible_runner_28x() (in module linch-

pin.ansible_runner), 118
ansible_runner_shell() (in module linch-

pin.ansible_runner), 118
async_timeout, 128

B
bind_to_hook_state() (linchpin.LinchpinAPI

method), 114

C
call_clone() (linchpin.fetch.FetchGit method), 125
call_wget() (linchpin.fetch.FetchHttp method), 125
client_id, 82
command() (linchpin.shell.click_default_group.DefaultGroup

method), 123

D
DataParser (class in linchpin.utils.dataparser), 125
default_inventories_path, 129
default_layouts_path, 129
default_playbooks_path, 129
default_resources_path, 129
default_schemas_path, 129
default_topologies_path, 129
DefaultGroup (class in linch-

pin.shell.click_default_group), 123
destroy, 130
destroy() (linchpin.api.Pinfile method), 118
destroy() (linchpin.api.Workspace method), 119

do_action() (linchpin.LinchpinAPI method), 114
do_validation() (linchpin.LinchpinAPI method),

114

E
evars, 129
execute_hook() (linchpin.hooks.LinchpinHooks

method), 124
extra_vars, 129

F
fetch_files() (linchpin.fetch.FetchGit method), 125
fetch_files() (linchpin.fetch.FetchHttp method),

125
fetch_git_src() (linchpin.hooks.LinchpinHooks

method), 124
fetch_src() (linchpin.hooks.LinchpinHooks

method), 124
FetchGit (class in linchpin.fetch), 125
FetchHttp (class in linchpin.fetch), 125
find_include() (linchpin.cli.LinchpinCli method),

121
find_pinfile() (linchpin.api.Workspace method),

119
format_commands() (linch-

pin.shell.click_default_group.DefaultGroup
method), 123

G
generate_inventory() (linchpin.LinchpinAPI

method), 114
get_cfg() (linchpin.api.Workspace method), 119
get_cfg() (linchpin.context.LinchpinContext method),

116
get_cfg() (linchpin.LinchpinAPI method), 115
get_command() (linch-

pin.shell.click_default_group.DefaultGroup
method), 123

get_credentials_path() (linch-
pin.api.Workspace method), 119

get_custom_action_manager() (linch-
pin.hooks.LinchpinHooks method), 124

137

LinchPin Documentation, Release 2.0.0

get_env_vars() (linchpin.context.LinchpinContext
method), 116

get_evar() (linchpin.api.Workspace method), 119
get_evar() (linchpin.context.LinchpinContext

method), 116
get_evar() (linchpin.LinchpinAPI method), 115
get_flag_ignore_failed_hooks() (linch-

pin.api.Workspace method), 119
get_flag_no_hooks() (linchpin.api.Workspace

method), 119
get_inventory() (linchpin.api.Workspace method),

119
get_latest_run() (linchpin.api.Workspace

method), 119
get_pf_data_from_rundb() (linch-

pin.LinchpinAPI method), 115
get_run_data() (linchpin.LinchpinAPI method), 115
get_vault_encryption() (linch-

pin.api.Workspace method), 119
get_vault_pass() (linchpin.api.Workspace

method), 119
get_workspace() (linchpin.api.Workspace method),

119
global_hooks_block() (linch-

pin.hooks.LinchpinHooks method), 124

H
hook, 129
hook_state() (linchpin.LinchpinAPI property), 115
HookError, 125

I
inventories_folder, 129
inventory, 129
inventory() (linchpin.cli.context.LinchpinCliContext

property), 122
inventory_file, 129
inventory_folder() (linch-

pin.cli.context.LinchpinCliContext property),
122

inventory_layout, 129
inventory_path() (linch-

pin.cli.context.LinchpinCliContext property),
122

L
layout, 129
layout_file, 129
layouts_folder, 129
linchpin

module, 114
linchpin.ansible_runner

module, 118
linchpin.api

module, 118
linchpin.callbacks

module, 118
linchpin.cli

module, 121
linchpin.cli.context

module, 122
linchpin.context

module, 116
linchpin.exceptions

module, 125
linchpin.fetch

module, 125
linchpin.hooks

module, 124
linchpin.hooks.action_managers

module, 124
linchpin.shell

module, 123
linchpin.shell.click_default_group

module, 123
linchpin.utils.dataparser

module, 125
linchpin_config, 129
LinchpinAPI (class in linchpin), 114
LinchpinCli (class in linchpin.cli), 121
LinchpinCliContext (class in linchpin.cli.context),

122
LinchpinContext (class in linchpin.context), 116
LinchpinError, 125
LinchpinHooks (class in linchpin.hooks), 124
list_commands() (linch-

pin.shell.click_default_group.DefaultGroup
method), 123

load_config() (linch-
pin.cli.context.LinchpinCliContext method),
122

load_config() (linchpin.context.LinchpinContext
method), 116

load_data() (linchpin.api.Workspace method), 119
load_global_evars() (linch-

pin.context.LinchpinContext method), 117
load_pinfile() (linch-

pin.utils.dataparser.DataParser method),
125

log() (linchpin.cli.context.LinchpinCliContext
method), 123

log() (linchpin.context.LinchpinContext method), 117
log_debug() (linchpin.cli.context.LinchpinCliContext

method), 123
log_debug() (linchpin.context.LinchpinContext

method), 117
log_info() (linchpin.cli.context.LinchpinCliContext

method), 123

138 Index

LinchPin Documentation, Release 2.0.0

log_info() (linchpin.context.LinchpinContext
method), 117

log_state() (linchpin.cli.context.LinchpinCliContext
method), 123

log_state() (linchpin.context.LinchpinContext
method), 117

lp_destroy() (linchpin.cli.LinchpinCli method), 121
lp_fetch() (linchpin.cli.LinchpinCli method), 121
lp_init() (linchpin.cli.LinchpinCli method), 121
lp_journal() (linchpin.LinchpinAPI method), 115
lp_path, 129
lp_setup() (linchpin.cli.LinchpinCli method), 122
lp_up() (linchpin.cli.LinchpinCli method), 122
lp_validate() (linchpin.cli.LinchpinCli method),

122
lpconfig, 129

M
messages (linchpin.exceptions.ValidationErrorHandler

attribute), 125
module

linchpin, 114
linchpin.ansible_runner, 118
linchpin.api, 118
linchpin.callbacks, 118
linchpin.cli, 121
linchpin.cli.context, 122
linchpin.context, 116
linchpin.exceptions, 125
linchpin.fetch, 125
linchpin.hooks, 124
linchpin.hooks.action_managers, 124
linchpin.shell, 123
linchpin.shell.click_default_group,

123
linchpin.utils.dataparser, 125

O
Options (class in linchpin.ansible_runner), 118
output, 129

P
parse_args() (linch-

pin.shell.click_default_group.DefaultGroup
method), 123

parse_json_yaml() (linch-
pin.utils.dataparser.DataParser method),
125

pf_data() (linchpin.cli.LinchpinCli property), 122
PinFile, 129
pinfile, 129
Pinfile (class in linchpin.api), 118
pinfile() (linchpin.cli.context.LinchpinCliContext

property), 123

pinfile() (linchpin.cli.LinchpinCli property), 122
PlaybookCallback (class in linchpin.callbacks), 118
playbooks_folder, 129
prepare_ctx_params() (linch-

pin.hooks.LinchpinHooks method), 124
prepare_inv_params() (linch-

pin.hooks.LinchpinHooks method), 124
prepare_rundb() (linchpin.LinchpinAPI method),

115
process() (linchpin.utils.dataparser.DataParser

method), 125
progress_monitor() (in module linchpin), 116
provider, 130
provision, 130

R
render() (linchpin.utils.dataparser.DataParser

method), 125
resolve_block_path() (linch-

pin.hooks.LinchpinHooks method), 124
resolve_command() (linch-

pin.shell.click_default_group.DefaultGroup
method), 124

resource_definitions, 130
resource_group_type, 130
resources, 130
resources_file, 130
run_action() (linchpin.hooks.LinchpinHooks

method), 124
run_actions() (linchpin.hooks.LinchpinHooks

method), 124
run_hooks() (linchpin.hooks.LinchpinHooks

method), 124
run_hooks() (linchpin.LinchpinAPI method), 115
run_id, 130
run_inventory_gen() (linch-

pin.hooks.LinchpinHooks method), 124
run_local_actions() (linch-

pin.hooks.LinchpinHooks method), 124
run_script() (linchpin.utils.dataparser.DataParser

method), 125
run_target() (linchpin.LinchpinAPI method), 115
run-id, 130
RunDB, 130
rundb, 130
rundb() (linchpin.hooks.LinchpinHooks property), 124

S
schema, 130
SchemaError, 125
secret, 82
set_cfg() (linchpin.api.Workspace method), 120
set_cfg() (linchpin.context.LinchpinContext method),

117

Index 139

LinchPin Documentation, Release 2.0.0

set_cfg() (linchpin.LinchpinAPI method), 115
set_credentials_path() (linch-

pin.api.Workspace method), 120
set_default_command() (linch-

pin.shell.click_default_group.DefaultGroup
method), 124

set_env_vars() (linchpin.context.LinchpinContext
method), 117

set_environment_vars() (in module linch-
pin.ansible_runner), 118

set_evar() (linchpin.api.Workspace method), 120
set_evar() (linchpin.context.LinchpinContext

method), 117
set_evar() (linchpin.LinchpinAPI method), 116
set_flag_ignore_failed_hooks() (linch-

pin.api.Workspace method), 120
set_flag_no_hooks() (linchpin.api.Workspace

method), 120
set_vault_encryption() (linch-

pin.api.Workspace method), 120
set_vault_pass() (linchpin.api.Workspace

method), 120
set_workspace() (linchpin.api.Workspace method),

120
setup_logging() (linch-

pin.cli.context.LinchpinCliContext method),
123

setup_logging() (linchpin.context.LinchpinContext
method), 117

setup_pbar() (linchpin.LinchpinAPI method), 116
setup_rundb() (linchpin.LinchpinAPI method), 116
ssh() (linchpin.LinchpinAPI method), 116
StateError, 125
subprocess_runner() (in module linch-

pin.ansible_runner), 118
subscription_id, 82
suppress_stdout() (in module linch-

pin.ansible_runner), 118

T
target, 130
teardown, 130
tenant, 82
topologies_folder, 130
topology, 130
topology_file, 130
topology_name, 130
TopologyError, 125
tqdm_or_mock() (in module linchpin), 116

U
uHash, 131
uhash, 130
up, 130

up() (linchpin.api.Pinfile method), 118
up() (linchpin.api.Workspace method), 120
update_rundb() (linchpin.LinchpinAPI method), 116

V
v2_runner_on_failed() (linch-

pin.callbacks.PlaybookCallback method),
118

v2_runner_on_ok() (linch-
pin.callbacks.PlaybookCallback method),
118

validate() (linchpin.api.Workspace method), 120
ValidationError, 125
ValidationErrorHandler (class in linch-

pin.exceptions), 125

W
workspace, 131
Workspace (class in linchpin.api), 118
workspace() (linchpin.cli.context.LinchpinCliContext

property), 123
workspace() (linchpin.cli.LinchpinCli property), 122
write_json() (linchpin.utils.dataparser.DataParser

method), 125
write_results_to_rundb() (linch-

pin.LinchpinAPI method), 116

140 Index

	Why LinchPin?
	Indices and tables
	Python Module Index
	Index

